scispace - formally typeset
Search or ask a question
Author

Robert Dudley

Bio: Robert Dudley is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Hummingbird & Calypte. The author has an hindex of 51, co-authored 154 publications receiving 8344 citations. Previous affiliations of Robert Dudley include Smithsonian Institution & University of California.


Papers
More filters
Journal ArticleDOI
TL;DR: The biomechanic of insect flight: form, function, evolution, The biomechanics of insectFlight: form- function-evolution, مرکز فناوری اطلاعات و اوشاوρزی
Abstract: The biomechanics of insect flight: form, function, evolution , The biomechanics of insect flight: form, function, evolution , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

860 citations

Journal ArticleDOI
TL;DR: This work estimates the age of the crown-group hummingbird assemblage, investigates the timing and patterns of lineage accumulation for hummingbirds overall and regionally, and evaluates the role of Andean uplift in hummingbird speciation.

326 citations

Journal ArticleDOI
01 May 1995-Nature
TL;DR: The late Palaeozoic was marked by significant changes in atmospheric chemistry and biotic composition as mentioned in this paper, with a marked increase and then decline of atmospheric oxygen and associated shifts in the concentration of carbon dioxide.
Abstract: The late Palaeozoic was marked by significant changes in atmospheric chemistry and biotic composition. Geochemical models suggest a marked increase and then decline of atmospheric oxygen and associated shifts in the concentration of carbon dioxide. Although the actual magnitude of these changes is uncertain, the pulse of oxygen concentration may have reached a maximum of 35% and then dropped to 15% (compared with the present 21%). This oxygen pulse may have influenced the evolution of major groups of organisms

293 citations

Journal ArticleDOI
TL;DR: Using high-speed cinematography, bumblebees in free flight were filmed over a range of forward airspeeds and a technique for determining quantitatively the angle of attack of the wing was developed.
Abstract: Using high-speed cinematography, bumblebees in free flight were filmed over a range of forward airspeeds. A detailed description of the wing tip and body kinematics was obtained from a three-dimensional reconstruction of the twodimensional film image. A technique for determining quantitatively the angle of attack of the wing was developed. Kinematic parameters found to vary consistently with airspeed were body angle, stroke plane angle, geometrical angle of attack, and rotational angles of the wings at the ends of half-strokes. Results of a morphological analysis of the wings and bodies of thoseinsects filmed in free flight are presented for use in later calculations of the lift and power requirements of forward flight.

283 citations

Journal ArticleDOI
TL;DR: Calculations of the mechanical power requirements of forward flight in bumblebees show that the power required to fly is independent of airspeed over a range from hovering flight to an airspeed of 4.5 ms −1.
Abstract: This paper examines the aerodynamics and power requirements of forward flight in bumblebees. Measurements weremade of the steady-state lift and drag forces acting on bumblebee wings and bodies. The aerodynamic force and pitching moment balances for bumblebees previously filmed in free flight were calculated. A detailed aerodynamic analysis was used to show that quasi-steady aerodynamic mechanisms are inadequate to explain even fast forward flight. Calculations of the mechanical power requirements of forward flight show that the power required to fly is independent of airspeed over a range from hovering flight to an airspeed of 4.5 ms −1

250 citations


Cited by
More filters
Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
01 Jul 2004-Ecology
TL;DR: This work has developed a quantitative theory for how metabolic rate varies with body size and temperature, and predicts how metabolic theory predicts how this rate controls ecological processes at all levels of organization from individuals to the biosphere.
Abstract: Metabolism provides a basis for using first principles of physics, chemistry, and biology to link the biology of individual organisms to the ecology of populations, communities, and ecosystems. Metabolic rate, the rate at which organisms take up, transform, and expend energy and materials, is the most fundamental biological rate. We have developed a quantitative theory for how metabolic rate varies with body size and temperature. Metabolic theory predicts how metabolic rate, by setting the rates of resource uptake from the environment and resource allocation to survival, growth, and reproduction, controls ecological processes at all levels of organization from individuals to the biosphere. Examples include: (1) life history attributes, including devel- opment rate, mortality rate, age at maturity, life span, and population growth rate; (2) population interactions, including carrying capacity, rates of competition and predation, and patterns of species diversity; and (3) ecosystem processes, including rates of biomass production and respiration and patterns of trophic dynamics. Data compiled from the ecological literature strongly support the theoretical predictions. Even- tually, metabolic theory may provide a conceptual foundation for much of ecology, just as genetic theory provides a foundation for much of evolutionary biology.

6,017 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
24 Apr 2009-Science
TL;DR: What is known and what is needed to develop a holistic understanding of the role of fire in the Earth system are reviewed, particularly in view of the pervasive impact of fires and the likelihood that they will become increasingly difficult to control as climate changes.
Abstract: Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

2,365 citations

Journal ArticleDOI
TL;DR: The biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below are reviewed, with emphasis on the simple physical picture and fundamental flow physics phenomena in this regime.
Abstract: Cell motility in viscous fluids is ubiquitous and affects many biological processes, including reproduction, infection and the marine life ecosystem. Here we review the biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below. At this scale, inertia is unimportant and the Reynolds number is small. Our emphasis is on the simple physical picture and fundamental flow physics phenomena in this regime. We first give a brief overview of the mechanisms for swimming motility, and of the basic properties of flows at low Reynolds number, paying special attention to aspects most relevant for swimming such as resistance matrices for solid bodies, flow singularities and kinematic requirements for net translation. Then we review classical theoretical work on cell motility, in particular early calculations of swimming kinematics with prescribed stroke and the application of resistive force theory and slender-body theory to flagellar locomotion. After examining the physical means by which flagella are actuated, we outline areas of active research, including hydrodynamic interactions, biological locomotion in complex fluids, the design of small-scale artificial swimmers and the optimization of locomotion strategies. (Some figures in this article are in colour only in the electronic version) This article was invited by Christoph Schmidt.

2,274 citations