scispace - formally typeset
Search or ask a question
Author

Robert E. Bartels

Bio: Robert E. Bartels is an academic researcher from Langley Research Center. The author has contributed to research in topics: Aeroelasticity & Aerodynamics. The author has an hindex of 15, co-authored 71 publications receiving 1004 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a reduced-order model (ROM) is developed for aeroelastic analysis using the CFL3D version 6.0 computational fluid dynamics (CFD) code, recently developed at the NASA Langley Research Center.

166 citations

Proceedings ArticleDOI
01 Jan 2002
TL;DR: As geometric complexity increased from airfoils to wings to complete configurations, the analytical derivation of these types of response func tions became impractical and the numerical computa tion of linear unsteady aerodynamic responses, in the frequency domain, became the method of choice.
Abstract: A reduced-order model (ROM) is developed for aeroelastic analysis using the CFL3D version 6.0 computational fluid dynamics (CFD) code, recently developed at the NASA Langley Research Center. This latest version of the flow solver includes a deforming mesh capability, a modal structural definition for nonlinear aeroelastic analyses, and a parallelization capability that provides a significant increase in computational efficiency. Flutter results for the AGARD 445.6 Wing computed using CFL3D v6.0 are presented, including discussion of associated computational costs. Modal impulse responses of the unsteady aerodynamic system are then computed using the CFL3Dv6 code and transformed into state-space form. Important numerical issues associated with the computation of the impulse responses are presented. The unsteady aerodynamic state-space ROM is then combined with a state-space model of the structure to create an aeroelastic simulation using the MATLAB/SIMULINK environment. The MATLAB/SIMULINK ROM is used to rapidly compute aeroelastic transients including flutter. The ROM shows excellent agreement with the aeroelastic analyses computed using the CFL3Dv6.0 code directly.

107 citations

Journal ArticleDOI
TL;DR: In this article, the authors performed a systematic computational study of the hypersonic aeroelastic and aerothermoelastic behavior of a three-dimensional configuration of a low-aspect-ratio wing.
Abstract: The testing of aeroelastically and aerothermoelastically scaled wind-tunnel models in hypersonic flow is not feasible; thus, computational aeroelasticity and aerothermoelasticity are essential to the development of hypersonic vehicles. Several fundamental issues in this area are examined by performing a systematic computational study of the hypersonic aeroelastic and aerothermoelastic behavior of a three-dimensional configuration. Specifically, the flutter boundary of a low-aspect-ratio wing, representative of a fin or control surface on a hypersonic vehicle, is studied over a range of altitudes using third-order piston theory and Euler and Navier-Stokes aerodynamics. The sensitivity of the computational-fluid-dynamics-based aeroelastic analysis to grid resolution and parameters governing temporal accuracy are considered. In general, good agreement at moderate-to-high altitudes was observed for the three aerodynamic models. However, the wing flutters at unrealistic Mach numbers in the absence of aerodynamic heating. Therefore, because aerodynamic heating is an inherent feature of hypersonic flight and the aeroelastic behavior of a vehicle is sensitive to structural variations caused by heating, an aerothermoelastic methodology is developed that incorporates the heat transfer between the fluid and structure based on computational-fluid-dynamics-generated aerodynamic heating. The aerothermoelastic solution procedure is then applied to the low-aspect-ratio wing operating on a representative hypersonic trajectory. In the latter study, the sensitivity of the flutter margin to perturbations in trajectory angle of attack and Mach number is considered. Significant reductions in the flutter boundary of the heated wing are observed. The wing is also found to be susceptible to thermal buckling.

97 citations

01 Apr 2006
TL;DR: This document contains the course notes on the computational fluid dynamics code CFL3D version 6.4 intended to provide from basic to advanced users the information necessary to successfully use the code for a broad range of cases.
Abstract: This document contains the course notes on the computational fluid dynamics code CFL3D version 6.4. It is intended to provide from basic to advanced users the information necessary to successfully use the code for a broad range of cases. Much of the course covers capability that has been a part of previous versions of the code, with material compiled from a CFL3D v5.0 manual and from the CFL3D v6 web site prior to the current release. This part of the material is presented to users of the code not familiar with computational fluid dynamics. There is new capability in CFL3D version 6.4 presented here that has not previously been published. There are also outdated features no longer used or recommended in recent releases of the code. The information offered here supersedes earlier manuals and updates outdated usage. Where current usage supersedes older versions, notation of that is made. These course notes also provides hints for usage, code installation and examples not found elsewhere.

67 citations

Journal ArticleDOI
TL;DR: In this article, the use of differential equations such as Eikonal, Hamilton-Jacobi and Poisson for the economical calculation of the nearest wall distance d, which is needed by some turbulence models, is explored.
Abstract: The use of differential equations such as Eikonal, Hamilton-Jacobi and Poisson for the economical calculation of the nearest wall distance d, which is needed by some turbulence models, is explored. Modifications that could palliate some turbulence-modeling anomalies are also discussed. Economy is of especial value for deforming/adaptive grid problems. For these, ideally, d is repeatedly computed. It is shown that the Eikonal and Hamilton-Jacobi equations can be easy to implement when written in implicit (or iterated) advection and advection-diffusion equation analogous forms, respectively. These, like the Poisson Laplacian term, are commonly occurring in CFD solvers, allowing the re-use of efficient algorithms and code components. The use of the NASA CFL3D CFD program to solve the implicit Eikonal and Hamilton-Jacobi equations is explored. The re-formulated d equations are easy to implement, and are found to have robust convergence. For accurate Eikonal solutions, upwind metric differences are required. The Poisson approach is also found effective, and easiest to implement. Modified distances are not found to affect global outputs such as lift and drag significantly, at least in common situations such as airfoil flows.

62 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review the development of new reduced-order modeling techniques and discuss their applicability to various problems in computational physics, including aerodynamic and aeroelastic behaviors of two-dimensional and three-dimensional geometries.

732 citations

Journal ArticleDOI
TL;DR: In this article, an interpolation method based on the Grassmann manifold and its tangent space at a point that is applicable to structural, aerodynamic, aeroelastic, and many other reduced-order models based on projection schemes is presented.
Abstract: Reduced-order models are usually thought of as computationally inexpensive mathematical representations that offer the potential for near real-time analysis. Although most reduced-order models can operate in near real-time, their construction can be computationally expensive, as it requires accumulating a large number of system responses to input excitations. Furthermore, reduced-order models usually lack robustness with respect to parameter changes and therefore must often be rebuilt for each parameter variation. Together, these two issues underline the need for a fast and robust method for adapting precomputed reduced-order models to new sets of physical or modeling parameters. To this effect, this paper presents an interpolation method based on the Grassmann manifold and its tangent space at a point that is applicable to structural, aerodynamic, aeroelastic, and many other reduced-order models based on projection schemes. This method is illustrated here with the adaptation of computational-fluid-dynamics-based aeroelastic reduced-order models of complete fighter configurations to new values of the freestream Mach number. Good correlations with results obtained from direct reduced-order model reconstruction, high-fidelity nonlinear and linear simulations are reported, thereby highlighting the potential of the proposed reduced-order model adaptation method for near real-time aeroelastic predictions using precomputed reduced-order model databases.

618 citations

01 Mar 2014
TL;DR: In this article, the results of a study to address the long range, strategic planning required by NASA's Revolutionary Computational Aerosciences (RCA) program in the area of computational fluid dynamics (CFD), including future software and hardware requirements for High Performance Computing (HPC), are presented.
Abstract: This report documents the results of a study to address the long range, strategic planning required by NASA's Revolutionary Computational Aerosciences (RCA) program in the area of computational fluid dynamics (CFD), including future software and hardware requirements for High Performance Computing (HPC). Specifically, the "Vision 2030" CFD study is to provide a knowledge-based forecast of the future computational capabilities required for turbulent, transitional, and reacting flow simulations across a broad Mach number regime, and to lay the foundation for the development of a future framework and/or environment where physics-based, accurate predictions of complex turbulent flows, including flow separation, can be accomplished routinely and efficiently in cooperation with other physics-based simulations to enable multi-physics analysis and design. Specific technical requirements from the aerospace industrial and scientific communities were obtained to determine critical capability gaps, anticipated technical challenges, and impediments to achieving the target CFD capability in 2030. A preliminary development plan and roadmap were created to help focus investments in technology development to help achieve the CFD vision in 2030.

489 citations

Journal ArticleDOI
TL;DR: In this paper, a multi-point high-fidelity aerostructural optimization of a long-range wide-body transonic transport aircraft configuration is presented, where the coupled adjoint sensitivity method is used to efficiently compute gradients, enabling the use of gradient-based optimization with respect to hundreds of aerodynamic shape and structural sizing variables.
Abstract: This paper presents multipoint high-fidelity aerostructural optimizations of a long-range wide-body transonic transport aircraft configuration. The aerostructural analysis employs Euler computational fluid dynamics with a 2-million-cell mesh and a structural finite-element model with 300,000 degrees of freedom. The coupled adjoint sensitivity method is used to efficiently compute gradients, enabling the use of gradient-based optimization with respect to hundreds of aerodynamic shape and structural sizing variables. The NASA Common Research Model is used as the baseline configuration, together with a wing box structure that was designed for this study. Two design optimization problems are solved: one where takeoff gross weight is minimized, and another where fuel burn is minimized. Each optimization uses a multipoint formulation with five cruise conditions and two maneuver conditions. Each of the optimization problems have 476 design variables, including wing planform, airfoil shape, and structural thickne...

335 citations

Journal ArticleDOI
TL;DR: In this article, a review of reduced order modeling techniques for geometrically nonlinear structures, more specifically those techniques that are applicable to structural models constructed using commercial finite element software, is presented.

286 citations