scispace - formally typeset
Search or ask a question
Author

Robert E. Kilker

Bio: Robert E. Kilker is an academic researcher from IBM. The author has contributed to research in topics: Non-volatile memory & Low voltage. The author has an hindex of 3, co-authored 7 publications receiving 19 citations.

Papers
More filters
Proceedings ArticleDOI
15 Jun 2016
TL;DR: An 80Kb logic Embedded Multi-Time Programmable Memory (MTPM) employs charge trapping and de-trapping behavior in 32nm/22nm High-K transistor, resulting in no added process complexity.
Abstract: An 80Kb logic Embedded Multi-Time Programmable Memory (MTPM) employs charge trapping and de-trapping behavior in 32nm/22nm High-K transistor, resulting in no added process complexity. Multi-step verification with overwrite protection employs block-write and signal margin degradation (∼30%) to satisfy 10 year retention at 105° C.

14 citations

Patent
23 Jun 2016
TL;DR: In this paper, a wordline signal is applied to a programmed FET and an unprogrammed FET of a memory cell, and a signal is output based on a low voltage of the first bitline and a high voltage of a second bitline.
Abstract: Voltage is increased on a wordline signal. The wordline signal is applied to a programmed FET and an unprogrammed FET of a memory cell. The programmed FET has a higher threshold voltage than the unprogrammed FET. The programmed FET is connected to a first bitline and the unprogrammed FET is connected to a second bitline. It is determined that the second bitline has reached a threshold voltage. In response to determining the second bitline has reached the threshold voltage, the first bitline is pulled towards ground. A signal is output based on a low voltage of the first bitline and a high voltage of the second bitline.

3 citations

Patent
31 Mar 2016
TL;DR: In this paper, a climate-controlled vending machine is monitored using data analytics, and a first item, of the two or more items within the primary storage unit, is transferred to the first slot of the secondary storage unit.
Abstract: A climate-controlled vending machine is monitored using data analytics. The climate-controlled vending machine includes a primary storage unit for storing two or more items. A first slot of an item is determined to be available within a secondary storage unit of the climate-controlled vending machine. The secondary storage unit is a climate-controlled unit. A first item, of the two or more items within the primary storage unit, is transferred to the first slot of the secondary storage unit. The first item within the first slot of the secondary storage unit is altered to a first condition. A selection from a first user is received. In response to the reception of the selection of the first item, the first item is dispensed to the user from a dispensary unit, wherein the item is being of the first condition. The first slot is replenished with a replacement item from the primary storage.

3 citations

Patent
04 Nov 2015
TL;DR: In this paper, a memory array has a NVM element with a plurality of FETs, and the first set has a first channel width greater than the second channel width.
Abstract: A memory array has a NVM element with a plurality of FETs. A first set of FETs of the plurality of FETs is coupled to a bitline true of the memory array. The first set of FETs has a first channel width. A second set of FETs of the plurality of FETs is coupled to a bitline complement of the memory array. The second set of FETs has a second channel width. The first channel width is greater than the second channel width. The channel width disparity provides the NVM element of the unprogrammed memory array with a default state.

1 citations

Patent
Karl R. Erickson1, Robert E. Kilker1, Phil C. Paone1, David P. Paulsen1, Gregory J. Uhlmann1 
15 Mar 2016
TL;DR: In this paper, a circuit has a wordline with an NVM element utilizing a first FET coupled to bitline true and a second FET coupling to the bitline complement.
Abstract: A circuit has a wordline with an NVM element utilizing a first FET coupled to bitline true and a second FET coupled to bitline complement. A NFET coupled to the bitline complement is configured to pull bitline true toward ground in response to bitline complement reaching a first voltage. One or more wordline drivers are coupled to the NVM element such that a first path from a wordline driver is coupled to the first FET while a second path from a wordline driver is coupled to the second FET. The first path is current-limited in comparison to the second path, such that a first slew rate between a wordline driver and the first FET is slower than a second slew rate between a wordline driver and the second FET. The slew rate disparity allows the bitline complement to reach the first voltage.

Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a multiple-time programmable embedded non-volatile memory element, called the "charge trap transistor" (CTT), was proposed for high-$k$ -metal-gate CMOS technologies.
Abstract: The availability of on-chip non-volatile memory for advanced high- $k$ -metal-gate CMOS technology nodes has been limited due to integration and scaling challenges as well as operational voltage incompatibilities, while its need continues to grow rapidly in modern high-performance systems. By exploiting intrinsic device self-heating enhanced charge trapping in as fabricated high- $k$ -metal-gate logic devices, we introduce a unique multiple-time programmable embedded non-volatile memory element, called the ‘charge trap transistor’ (CTT), for high- $k$ -metal-gate CMOS technologies. Functionality and feasibility of using CTT memory devices have been demonstrated on 22 nm planar and 14 nm FinFET technology platforms, including fully functional product prototype memory arrays. These transistor memory devices offer high density ( $\sim 0.144\mu\mathrm{m}^{2}$ /bit for 22 nm and $\sim 0.082\mu\mathrm{m}^{2}$ /bit for 14 nm technology), logic voltage compatible and low peak power operation (~4mW), and excellent retention for a fully integrated and scalable embedded non-volatile memory without added process complexity or masks.

42 citations

Journal ArticleDOI
TL;DR: Experimental data from 22-nm silicon-on-insulator devices reveal that a charge-trap transistor possesses promising characteristics for implementing synapses in neural networks, such as very fine tunability, weight-dependent plasticity, and low power consumption.
Abstract: Unsupervised learning is demonstrated using a device ubiquitously found in today’s technology: a transistor with high- ${k}$ -metal gate. Specifically, the charge-trapping phenomenon in the high- ${k}$ gate dielectric is leveraged so that the device can be used as a non-volatile analog memory. Experimental data from 22-nm silicon-on-insulator devices reveal that a charge-trap transistor possesses promising characteristics for implementing synapses in neural networks, such as very fine tunability, weight-dependent plasticity, and low power consumption. A proof-of-concept winner-takes-all neural network is simulated based on experimental data and perfect clustering is achieved within tens of training cycles. This means that the network can be trained for multiple times, and a larger system can be built. The robustness of the procedure to the device variation is also discussed.

27 citations

Journal ArticleDOI
TL;DR: An analog neural network computing engine based on CMOS-compatible charge-trap transistor (CTT) is proposed and obtained a performance comparable to state-of-the-art fully connected neural networks using 8-bit fixed-point resolution.
Abstract: An analog neural network computing engine based on CMOS-compatible charge-trap transistor (CTT) is proposed in this paper. CTT devices are used as analog multipliers. Compared to digital multipliers, CTT-based analog multiplier shows significant area and power reduction. The proposed computing engine is composed of a scalable CTT multiplier array and energy efficient analog–digital interfaces. By implementing the sequential analog fabric, the engine’s mixed-signal interfaces are simplified and hardware overhead remains constant regardless of the size of the array. A proof-of-concept 784 by 784 CTT computing engine is implemented using TSMC 28-nm CMOS technology and occupies 0.68 mm2. The simulated performance achieves 76.8 TOPS (8-bit) with 500 MHz clock frequency and consumes 14.8 mW. As an example, we utilize this computing engine to address a classic pattern recognition problem—classifying handwritten digits on MNIST database and obtained a performance comparable to state-of-the-art fully connected neural networks using 8-bit fixed-point resolution.

26 citations

Journal ArticleDOI
TL;DR: A comprehensive investigation of the programming behavior of CTTs, including analog retention, intra- and inter-device variation, and fine-tuning of the device, both for individual devices and for devices in an integrated array reveals the promising future of using the CTT as a CMOS-only analog memory device.
Abstract: Since our demonstration of unsupervised learning using the CMOS-only charge-trap transistors (CTTs) as analog synapses, there has been an increasing interest in exploiting the device for various other neural network (NN) applications. However, most of these studies are limited to mere simulation due to the absence of detailed experimental device characterization. In this article, we provide a comprehensive investigation of the programming behavior of CTTs, including analog retention, intra- and inter-device variation, and fine-tuning of the device, both for individual devices and for devices in an integrated array. It is found that, after programming, the channel current gradually increases to a higher level, and the shift is larger when the device is programmed to a higher threshold voltage. With this postprogramming current increase appropriately accounted for, individual devices can be programmed to an equivalent precision of five bits, and three bits can be achieved for devices in an array. Our results reveal the promising future of using the CTT as a CMOS-only analog memory device.

18 citations

Journal ArticleDOI
TL;DR: The design and implementation of an 80-kb logic-embedded non-volatile multi-time programmable memory (MTPM) with no added process complexity is described and high-temperature stress results show a projected data retention of 10 years at 125 °C.
Abstract: This paper describes the design and implementation of an 80-kb logic-embedded non-volatile multi-time programmable memory (MTPM) with no added process complexity. Charge trap transistors (CTTs) that exploit charge trapping and de-trapping behavior in high-K dielectric of 32-/22-nm Logic FETs are used as storage elements with logic-compatible programming voltages. A high-gain slew-sense amplifier (SA) is used to efficiently detect the threshold voltage difference ( $\Delta V_{\textrm {DIF}}$ ) between the true and complement FETs in the twin cell. Design-assist techniques including multi-step programming with over-write protection and block write algorithm are used to enhance the programming efficiency without causing a dielectric breakdown. High-temperature stress results show a projected data retention of 10 years at 125 °C with a signal loss of <30% that is margined in while programming, by employing a sense margining logic in the SA. Scalability of CTT has been established by the first demonstration of CTT-based MTPM in 14-nm bulk FinFET technology with read cycle time of 40 ns at 0.7-V VDD.

15 citations