scispace - formally typeset
Search or ask a question
Author

Robert E. Rowlands

Bio: Robert E. Rowlands is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Stress (mechanics) & Thermoelastic damping. The author has an hindex of 24, co-authored 124 publications receiving 1950 citations.


Papers
More filters
Journal Article
TL;DR: In this article, the effect of different sizes of wood flour particles on the mechanical properties of wood-flour-filled polypropylene composites was investigated and compared to those of composites reinforced with refined wood fiber.
Abstract: Commercial wood flour, the most common wood-derived filler for thermoplastics, is produced in a mixture of particle sizes and generally has a lower aspect ratio than wood and other natural fibers. To understand how wood flour and fiber characteristics influence the mechanical properties of polypropylene composites, we first investigated the effect of different sizes of wood flour particles on the mechanical properties of wood-flour-filled polypropylene composites. We then compared the properties of wood-flour-filled composites to those of composites reinforced with refined wood fiber. We also studied the effect of a maleated polypropylene coupling agent on composite properties. Wood flour particles (35, 70, 120, and 235 mesh) were compounded at 40% by weight with polypropylene. Increases in tensile and flexural strength and modulus of the wood flour composites were found to correspond with increases in aspect ratio. Notched impact energy increased with increasing particle size, whereas unnotched impact energy decreased with increasing particle size. Refined wood fiber and 40-mesh wood flour was compounded at 20% and 40% by weight with polypropylene. Wood fiber resulted in higher strengths at both filler levels and higher moduli at the 40% level compared to the strength properties of wood flour composites. The higher aspect ratio of the wood fiber had little effect on impact energy. The maleated polypropylene coupling agent caused greater strength increases in wood fiber composites than in wood flour composites. The coupling agent did not significantly affect tensile or flexural moduli. Our results clearly support the use of higher aspect ratio wood fibers and coupling agents for increasing the strength of wood/plastic composites.

424 citations

Book ChapterDOI
01 Jan 2008
TL;DR: In this article, the theoretical foundations for the experimental technique of thermoelastic stress analysis are presented, followed by a description of the equipment, test materials, and methods required to perform an analysis.
Abstract: In this chapter an outline of the theoretical foundations for the experimental technique of thermoelastic stress analysis is presented, followed by a description of the equipment, test materials, and methods required to perform an analysis. Thermoelastic stress analysis is a technique by which maps of a linear combination of the in-plane surface stresses of a component are obtained by measuring the surface temperature changes induced by time-varying stress/strain distributions using a sensitive infrared detector. Experimental considerations relating to issues such as shielding from background radiation, edge effects, motion compensation, detector setup, calibration, and data interpretation are discussed. The potential of the technique is illustrated using a number of examples that involve isotropic as well as orthotropic materials, fracture mechanics, separation of component stresses, and vibration analysis. Applications of the method to situations involving residual stresses, elevated temperatures, and variable amplitude loading are also considered.

76 citations

Journal ArticleDOI
TL;DR: In this paper, a smooth two-dimensional numerical method is presented for representing and differentiating discrete full-field experimental information, which involves minimizing a positive definite functional by use of finite-elements to best-fit the data.
Abstract: A new smooth two-dimensional numerical method is presented for representing and differentiating discrete fullfield experimental information. The method involves minimizing a positive definite functional by use of finite-elements to ‘best-fit’ the data. Experimental data points may occur in any configuration, boundary derivatives need not be specified, and arbitrarily shaped regions can be handled readily. The method is demonstrated by photomechanical strain analysis.

66 citations

Journal ArticleDOI
TL;DR: In this article, tensorial type failure criteria with linear and quadratic terms are used to calculate the strength of paperboard under plane stress, and theoretical predictions and experimental data are correlated in all four quadrants of biaxial normal stress with various levels of shear.
Abstract: Tensorial-type failure criteria with linear and quadratic terms are used to calculate the strength of paperboard under plane stress. Theoretical predictions and experimental data are correlated in all four quadrants of biaxial normal stress with various levels of shear. Several methods are examined for determining the interaction coefficientF12. Comparisons are made with optimum values obtained from least-squares analyses. The best analytical-experimental agreement at all levels of shear is obtained approximately by using coefficientF12 equal to zero. The sensitivity ofF12 to errors in experimental input data is also studied. Reliable correlation with experiment, as well as operational simplicity, make these criteria attractive for predicting the strength of paperboard.

56 citations

Journal ArticleDOI
TL;DR: In this article, the strength reduction factor for glass-, boron-, and graphite-epoxy plates with holes loaded in tension was determined for different layup and stacking sequences.
Abstract: Strain distributions to failure, tensile and compressive strain-concentration factors, and strength-reduction factors were determined for glass-, boron-, and graphite-epoxy plates with holes loaded in tension. Strain gages, photoelastic coatings and moire techniques were used. Ten variations of layup and stacking sequence were studied. The boron-epoxy composite was found to be the stiffest and strongest of the three. The graphite laminate with the highest stress concentration and the most linear strain response exhibited the highest strength-reduction factor. In all cases, the maximum strain at failure on the hole boundary was higher than the ultimate tensile-coupon strain. In general, it was found that, the higher the stress-concentration factor, the higher the strength-reduction factor. Thus, the [0/90/0/90]s layup with a stress-concentration factor of 4.82 had a strength-reduction factor of 3.18. At the other extreme, the most flexible layup [±45/±45]s with the lowest stress-concentration factor of 2.06 had the lowest strength-reduction factor of 1.10. Stacking sequences associated with the tensile interlaminar normal stress or high interlaminar shear stress near the boundary, resulted in laminates 10 to 20 percent weaker than corresponding alternate stacking sequences. Furthermore, it was found that stacking-sequence variations can alter the mode of failure from catastrophic to noncatastrophic.

53 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors developed and limited experimental verification of a method which can determine displacements and gradients using the Newton-Raphson method of partial corrections, which was shown to be accurate in determining displacement and certain gradients, while using significantly less CPU time than the current coarse-fine search method.
Abstract: Digital image correlation is finding wider use in the field of mechanics. One area of weakness in the current technique is the lack of available displacement gradient terms. This technique, based on a coarse-fine search method, is capable of calculating the gradients. However the speed at which it does so has prevented widespread use. Presented in this paper is the development and limited experimental verification of a method which can determine displacements and gradients using the Newton-Raphson method of partial corrections. It will be shown that this method is accurate in determining displacements and certain gradients, while using significantly less CPU time than the current coarse-fine search method.

1,304 citations

Journal ArticleDOI
TL;DR: In this paper, a brief outline of work that covers in the area of biocomposites, major class of biodegradable polymers, natural fibres, as well as their manufacturing techniques and properties has been highlighted.
Abstract: The growing ecological and environmental consciousness has driven efforts for development of new innovative materials for various end-use applications. Polymers synthesized from natural resources, have gained considerable research interest in the recent years. This review paper is intended to provide a brief outline of work that covers in the area of biocomposites, major class of biodegradable polymers, natural fibres, as well as their manufacturing techniques and properties has been highlighted. Various surface modification methods were incorporated to improve the fibre–matrix adhesion resulting in the enhancement of mechanical properties of the biocomposites. Moreover, an economical impact and future direction of these materials has been critically reviewed. This review concludes that the biocomposites form one of the emerging areas in polymer science that gain attention for use in various applications ranging from automobile to the building industries.

894 citations

Journal ArticleDOI
TL;DR: From a technical point of view, these bio-based composites will enhance mechanical strength and acoustic performance, reduce material weight and fuel consumption, lower production cost, improve passenger safety and shatterproof performance under extreme temperature changes, and improve biodegradability for the auto interior parts.

844 citations

Journal ArticleDOI
TL;DR: A review of the development and the state of the art in dynamic testing techniques and dynamic mechanical behaviour of rock materials can be found in this article, where a detailed description of various dynamic mechanical properties (e.g., uniaxial and triaxial compressive strength, tensile strength, shear strength and fracture toughness) and corresponding fracture behaviour are discussed.
Abstract: The purpose of this review is to discuss the development and the state of the art in dynamic testing techniques and dynamic mechanical behaviour of rock materials. The review begins by briefly introducing the history of rock dynamics and explaining the significance of studying these issues. Loading techniques commonly used for both intermediate and high strain rate tests and measurement techniques for dynamic stress and deformation are critically assessed in Sects. 2 and 3. In Sect. 4, methods of dynamic testing and estimation to obtain stress–strain curves at high strain rate are summarized, followed by an in-depth description of various dynamic mechanical properties (e.g. uniaxial and triaxial compressive strength, tensile strength, shear strength and fracture toughness) and corresponding fracture behaviour. Some influencing rock structural features (i.e. microstructure, size and shape) and testing conditions (i.e. confining pressure, temperature and water saturation) are considered, ending with some popular semi-empirical rate-dependent equations for the enhancement of dynamic mechanical properties. Section 5 discusses physical mechanisms of strain rate effects. Section 6 describes phenomenological and mechanically based rate-dependent constitutive models established from the knowledge of the stress–strain behaviour and physical mechanisms. Section 7 presents dynamic fracture criteria for quasi-brittle materials. Finally, a brief summary and some aspects of prospective research are presented.

781 citations

Book ChapterDOI
01 Jan 2000
TL;DR: Two-dimensional image correlation has been widely used for deformation measurements in a variety of applications including fracture mechanics, biomechanics, constitutive property measurement in complex materials, model verification for large, flawed structures and nondestructive evaluation as discussed by the authors.
Abstract: The foundations of two- and three-dimensional image correlation, as well as recent developments, are described in detail. The versatility and robustness of these methods are illustrated through application examples from diverse areas including fracture mechanics, biomechanics, constitutive property measurement in complex materials, model verification for large, flawed structures and nondestructive evaluation. A detailed description of experimental and data-reduction procedures is presented for the application of the two-dimensional image-correlation method to thin-sheet mixed-mode I/II fracture studies, local crack-closure measurements using optical microscopy and the measurement of constitutive properties. Application examples using three-dimensional image correlation include profiling of components for reverse engineering and manufacturing and the measurement of full-field surface deformation during wide cracked panel tensile tests for verification of buckling and crack-growth models. Results from nearly sixteen years of use have demonstrated that both two-dimensional and three-dimensional image-correlation methods are robust and accurate tools for deformation measurements in a variety of applications. The range of uses for the two-and three-dimensional image-correlation methods is growing rapidly as scientists and engineers begin to understand their true capabilities.

510 citations