scispace - formally typeset
Search or ask a question
Author

Robert E. Tarjan

Bio: Robert E. Tarjan is an academic researcher from Princeton University. The author has contributed to research in topics: Time complexity & Spanning tree. The author has an hindex of 114, co-authored 400 publications receiving 67305 citations. Previous affiliations of Robert E. Tarjan include AT&T & Massachusetts Institute of Technology.


Papers
More filters
Proceedings ArticleDOI
01 Nov 1986
TL;DR: This paper develops simple, systematic, and efficient techniques for making linked data structures persistent, and uses them to devise persistent forms of binary search trees with logarithmic access, insertion, and deletion times and O (1) space bounds for insertion and deletion.
Abstract: This paper is a study of persistence in data structures. Ordinary data structures are ephemeral in the sense that a change to the structure destroys the old version, leaving only the new version available for use. In contrast, a persistent structure allows access to any version, old or new, at any time. We develop simple, systematic, and efficient techniques for making linked data structures persistent. We use our techniques to devise persistent forms of binary search trees with logarithmic access, insertion, and deletion times and O (1) space bounds for insertion and deletion.

866 citations

Journal ArticleDOI
TL;DR: Any n-vertex planar graph has the property that it can be divided into components of roughly equal size by removing only O(√n) vertices, and this separator theorem in combination with a divide-and-conquer strategy leads to many new complexity results for planar graphs problems.
Abstract: Any n-vertex planar graph has the property that it can be divided into components of roughly equal size by removing only $O(\sqrt n )$ vertices. This separator theorem, in combination with a divide-and-conquer strategy, leads to many new complexity results for planar graph problems. This paper describes some of these results.

767 citations

Journal ArticleDOI
01 Jun 1984-Networks
TL;DR: This paper considers the problem of finding, for each possible sink vertex v, a pair of edge-disjoint paths from s to v of minimum total edge cost, and gives an implementation of Suurballe's algorithm that runs in O(m log(1+ m/n)n) time and O( m) space.
Abstract: Let G be a directed graph containing n vertices, one of which is a distinguished source s, and m edges, each with a non-negative cost. We consider the problem of finding, for each possible sink vertex v, a pair of edge-disjoint paths from s to v of minimum total edge cost. Suurballe has given an O(n2 logn)-time algorithm for this problem. We give an implementation of Suurballe's algorithm that runs in O(m log(1+ m/n)n) time and O(m) space. Our algorithm builds an implicit representation of the n pairs of paths; given this representation, the time necessary to explicitly construct the pair of paths for any given sink is O(1) per edge on the paths.

758 citations

Journal ArticleDOI
TL;DR: A fast algorithm for finding dominators in a flowgraph is presented, which beat the straightforward algorithm and the bit vector algorithm on all but the smallest graphs tested.
Abstract: A fast algorithm for finding dominators in a flowgraph is presented. The algorithm uses depth-first search and an efficient method of computing functions defined on paths in trees. A simple implementation of the algorithm runs in O(m log n) time, where m is the number of edges and n is the number of vertices in the problem graph. A more sophisticated implementation runs in O(ma(m, n)) time, where a(m, n) is a functional inverse of Ackermann's function.Both versions of the algorithm were implemented in Algol W, a Stanford University version of Algol, and tested on an IBM 370/168. The programs were compared with an implementation by Purdom and Moore of a straightforward O(mn)-time algorithm, and with a bit vector algorithm described by Aho and Ullman. The fast algorithm beat the straightforward algorithm and the bit vector algorithm on all but the smallest graphs tested.

706 citations

Proceedings ArticleDOI
11 May 1981
TL;DR: An O(mn log n)-time algorithm is obtained to find a maximum flow in a network of n vertices and m edges, beating by a factor of log n the fastest algorithm previously known for sparse graphs.
Abstract: We propose a data structure to maintain a collection of vertex-disjoint trees under a sequence of two kinds of operations: a link operation that combines two trees into one by adding an edge, and a cut operation that divides one tree into two by deleting an edge. Our data structure requires O(log n) time per operation when the time is amortized over a sequence of operations. Using our data structure, we obtain new fast algorithms for the following problems: (1) Computing deepest common ancestors. (2) Solving various network flow problems including finding maximum flows, blocking flows, and acyclic flows. (3) Computing certain kinds of constrained minimum spanning trees. (4) Implementing the network simplex algorithm for the transshipment problem. Our most significant application is (2); we obtain an O(mn log n)-time algorithm to find a maximum flow in a network of n vertices and m edges, beating by a factor of log n the fastest algorithm previously known for sparse graphs.

697 citations


Cited by
More filters
Book
01 Jan 1988
TL;DR: Probabilistic Reasoning in Intelligent Systems as mentioned in this paper is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty, and provides a coherent explication of probability as a language for reasoning with partial belief.
Abstract: From the Publisher: Probabilistic Reasoning in Intelligent Systems is a complete andaccessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty—and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition—in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.

15,671 citations

Journal ArticleDOI
22 Dec 2000-Science
TL;DR: Locally linear embedding (LLE) is introduced, an unsupervised learning algorithm that computes low-dimensional, neighborhood-preserving embeddings of high-dimensional inputs that learns the global structure of nonlinear manifolds.
Abstract: Many areas of science depend on exploratory data analysis and visualization. The need to analyze large amounts of multivariate data raises the fundamental problem of dimensionality reduction: how to discover compact representations of high-dimensional data. Here, we introduce locally linear embedding (LLE), an unsupervised learning algorithm that computes low-dimensional, neighborhood-preserving embeddings of high-dimensional inputs. Unlike clustering methods for local dimensionality reduction, LLE maps its inputs into a single global coordinate system of lower dimensionality, and its optimizations do not involve local minima. By exploiting the local symmetries of linear reconstructions, LLE is able to learn the global structure of nonlinear manifolds, such as those generated by images of faces or documents of text.

15,106 citations

Book
01 Jan 1974
TL;DR: This text introduces the basic data structures and programming techniques often used in efficient algorithms, and covers use of lists, push-down stacks, queues, trees, and graphs.
Abstract: From the Publisher: With this text, you gain an understanding of the fundamental concepts of algorithms, the very heart of computer science. It introduces the basic data structures and programming techniques often used in efficient algorithms. Covers use of lists, push-down stacks, queues, trees, and graphs. Later chapters go into sorting, searching and graphing algorithms, the string-matching algorithms, and the Schonhage-Strassen integer-multiplication algorithm. Provides numerous graded exercises at the end of each chapter. 0201000296B04062001

9,262 citations

Journal ArticleDOI
TL;DR: A thorough exposition of community structure, or clustering, is attempted, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists.
Abstract: The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

9,057 citations

Journal ArticleDOI
TL;DR: A thorough exposition of the main elements of the clustering problem can be found in this paper, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

8,432 citations