scispace - formally typeset
Search or ask a question
Author

Robert F. Stallard

Bio: Robert F. Stallard is an academic researcher from Smithsonian Tropical Research Institute. The author has contributed to research in topics: Sediment & Erosion. The author has an hindex of 47, co-authored 105 publications receiving 10956 citations. Previous affiliations of Robert F. Stallard include University of Colorado Boulder & Field Museum of Natural History.


Papers
More filters
Journal ArticleDOI
TL;DR: In the Amazon Basin, substrate lithology and erosional regime (seen in terms of transport-limited and weathering-limited denudation) exert the most fundamental control on the chemistry of surface waters within a catchment.
Abstract: In the Amazon Basin, substrate lithology and erosional regime (seen in terms of transport-limited and weathering-limited denudation) exert the most fundamental control on the chemistry of surface waters within a catchment. Secondary effects, such as the precipitation of salts within soils and in stream beds, biological uptake and release, and cyclic salt inputs, are more difficult to discern. Samples can be separated into four principal groupings based on relationships between total cation charge (TZ+) and geology. (1) Rivers with 0 3000 μeq/l drain massive evaporites. These rivers are rich in Na and Cl. In the third and fourth categories, rivers tend to have 1:1 (equivalent) ratios of Na:Cl and (Ca+Mg):(alkalinity+SO4), caused primarily by the weathering of carbonates and evaporites. Supplement available with entire article on microfiche. Order from the American Geophysical Union, 2000 Florida Avenue, N.W., Washington, DC 20009. Document C83-002; $2.50. Payment must accompany order.

1,208 citations

Journal ArticleDOI
TL;DR: It is found that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species.
Abstract: The importance of niche vs. neutral assembly mechanisms in structuring tropical tree communities remains an important unsettled question in community ecology [Bell G (2005) Ecology 86:1757-1770]. There is ample evidence that species distributions are determined by soils and habitat factors at landscape ( 0.5 million individual trees of 1,400 species and 10 essential plant nutrients, we used Monte Carlo simulations of species distributions to test plant-soil associations against null expectations based on dispersal assembly. We found that the spatial distributions of 36-51% of tree species at these sites show strong associations to soil nutrient distributions. Neutral dispersal assembly cannot account for these plant-soil associations or the observed niche breadths of these species. These results indicate that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species.

819 citations

Journal ArticleDOI
22 Jun 2001-Science
TL;DR: Land- and atmosphere-based estimates of the carbon sink in the coterminous United States for 1980–89 are consistent, within the large ranges of uncertainty for both methods, indicating a relatively stable U.S. sink throughout the period.
Abstract: For the period 1980-89, we estimate a carbon sink in the coterminous United States between 0.30 and 0.58 petagrams of carbon per year (petagrams of carbon = 10(15) grams of carbon). The net carbon flux from the atmosphere to the land was higher, 0.37 to 0.71 petagrams of carbon per year, because a net flux of 0.07 to 0.13 petagrams of carbon per year was exported by rivers and commerce and returned to the atmosphere elsewhere. These land-based estimates are larger than those from previous studies (0.08 to 0.35 petagrams of carbon per year) because of the inclusion of additional processes and revised estimates of some component fluxes. Although component estimates are uncertain, about one-half of the total is outside the forest sector. We also estimated the sink using atmospheric models and the atmospheric concentration of carbon dioxide (the tracer-transport inversion method). The range of results from the atmosphere-based inversions contains the land-based estimates. Atmosphere- and land-based estimates are thus consistent, within the large ranges of uncertainty for both methods. Atmosphere-based results for 1980-89 are similar to those for 1985-89 and 1990-94, indicating a relatively stable U.S. sink throughout the period.

804 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the linkages between the carbon cycle and sedimentary processes on land and found that sedimentation on land can bury vast quantities of organic carbon, roughly 1015 g C yr−1.
Abstract: This paper examines the linkages between the carbon cycle and sedimentary processes on land. Available data suggest that sedimentation on land can bury vast quantities of organic carbon, roughly 1015 g C yr−1. To evaluate the relative roles of various classes of processes in the burial of carbon on land, terrestrial sedimentation was modeled as a series of 864 scenarios. Each scenario represents a unique choice of intensities for seven classes of processes and two different global wetland distributions. Comparison was made with presumed preagricultural conditions. The classes of processes were divided into two major component parts: clastic sedimentation of soil-derived carbon and organic sedimentation of autochthonous carbon. For clastic sedimentation, masses of sediment were considered for burial as reservoir sediment, lake sediment, and combined colluvium, alluvium, and aeolian deposits. When the ensemble of models is examined, the human-induced burial of 0.6-1.5·1015 g yr−1 of carbon on land is entirely plausible. This sink reaches its maximum strength between 30° and 50° N. Paddy lands stand out as a type of land use that warrants future study, but the many faces of rice agriculture limit generalization. In an extreme scenario, paddy lands alone could be made to bury about 1·1015 g C yr−1. Arguing that terrestrial sedimentation processes could be much of the sink for the so called “missing carbon” is reasonable. Such a hypothesis, however, requires major redesign of how the carbon cycle is modeled. Unlike ecosystem processes that are amenable to satellite monitoring and parallel modeling, many aspects of terrestrial sedimentation are hidden from space.

777 citations

Journal ArticleDOI
TL;DR: An exhaustive review and reanalysis of geological, paleontological, and molecular records converge upon a cohesive narrative of gradually emerging land and constricting seaways, with formation of the Isthmus of Panama sensu stricto around 2.8 Ma.
Abstract: The formation of the Isthmus of Panama stands as one of the greatest natural events of the Cenozoic, driving profound biotic transformations on land and in the oceans. Some recent studies suggest that the Isthmus formed many millions of years earlier than the widely recognized age of approximately 3 million years ago (Ma), a result that if true would revolutionize our understanding of environmental, ecological, and evolutionary change across the Americas. To bring clarity to the question of when the Isthmus of Panama formed, we provide an exhaustive review and reanalysis of geological, paleontological, and molecular records. These independent lines of evidence converge upon a cohesive narrative of gradually emerging land and constricting seaways, with formation of the Isthmus of Panama sensu stricto around 2.8 Ma. The evidence used to support an older isthmus is inconclusive, and we caution against the uncritical acceptance of an isthmus before the Pliocene.

595 citations


Cited by
More filters
Journal ArticleDOI

6,278 citations

Journal ArticleDOI
19 Aug 2011-Science
TL;DR: The total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks, with tropical estimates having the largest uncertainties.
Abstract: The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ± 0.4 petagrams of carbon per year (Pg C year–1) globally for 1990 to 2007. We also estimate a source of 1.3 ± 0.7 Pg C year–1 from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 ± 0.5 Pg C year–1 partially compensated by a carbon sink in tropical forest regrowth of 1.6 ± 0.5 Pg C year–1. Together, the fluxes comprise a net global forest sink of 1.1 ± 0.8 Pg C year–1, with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.

4,948 citations

Journal ArticleDOI
18 Aug 2006-Science
TL;DR: It is shown that large wildfire activity increased suddenly and markedly in the mid-1980s, with higher large-wildfire frequency, longer wildfire durations, and longer wildfire seasons.
Abstract: Western United States forest wildfire activity is widely thought to have increased in recent decades, yet neither the extent of recent changes nor the degree to which climate may be driving regional changes in wildfire has been systematically documented. Much of the public and scientific discussion of changes in western United States wildfire has focused instead on the effects of 19th- and 20th-century land-use history. We compiled a comprehensive database of large wildfires in western United States forests since 1970 and compared it with hydroclimatic and land-surface data. Here, we show that large wildfire activity increased suddenly and markedly in the mid-1980s, with higher large-wildfire frequency, longer wildfire durations, and longer wildfire seasons. The greatest increases occurred in mid-elevation, Northern Rockies forests, where land-use histories have relatively little effect on fire risks and are strongly associated with increased spring and summer temperatures and an earlier spring snowmelt.

4,701 citations

Book
01 Jan 1979
TL;DR: This significant book provides not only an introduction to the dynamics of aquatic chem istries but also identifies those materials that jeopardize the resources of both the marine and fluvial domains.
Abstract: Aquatic chemistry is becoming both a rewarding and substantial area of inquiry and is drawing many prominent scientists to its fold. Its literature has changed from a compilation of compositional tables to studies of the chemical reactions occurring within the aquatic environments. But more than this is the recognition that human society in part is determining the nature of aquatic systems. Since rivers deliver to the world ocean most of its dissolved and particulate components, the interactions of these two sets of waters determine the vitality of our coastal waters. This significant vol ume provides not only an introduction to the dynamics of aquatic chem istries but also identifies those materials that jeopardize the resources of both the marine and fluvial domains. Its very title provides its emphasis but clearly not its breadth in considering natural processes. The book will be of great value to those environmental scientists who are dedicated to keeping the resources of the hydrosphere renewable. As the size of the world population becomes larger in the near future and as the uses of materials and energy show parallel increases, the rivers and oceans must be considered as a resource to accept some of the wastes of society. The ability of these waters and the sediments below them to accommodate wastes must be assessed continually. The key questions relate to the capacities of aqueous systems to carry one or more pollutants."

3,488 citations