scispace - formally typeset
Search or ask a question
Author

Robert Gentleman

Bio: Robert Gentleman is an academic researcher from Genentech. The author has contributed to research in topics: Bioconductor & Gene expression profiling. The author has an hindex of 52, co-authored 139 publications receiving 48510 citations. Previous affiliations of Robert Gentleman include Harvard University & Brigham and Women's Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: Three of the most widely used and comprehensive statistical analysis tools written in R through the Bioconductor project are reviewed, the Java-based TM4 software system available from The Institute for Genomic Research, and BASE, the Web-based system developed at Lund University.
Abstract: DNA microarray assays represent the first widely used application that attempts to build upon the information provided by genome projects in the study of biological questions. One of the greatest challenges with working with microarrays is collecting, managing, and analyzing data. Although several commercial and noncommercial solutions exist, there is a growing body of freely available, open source software that allows users to analyze data using a host of existing techniques and to develop their own and integrate them within the system. Here we review three of the most widely used and comprehensive systems, the statistical analysis tools written in R through the Bioconductor project (http://www.bioconductor.org), the Java-based TM4 software system available from The Institute for Genomic Research (http://www.tigr.org/software), and BASE, the Web-based system developed at Lund University (http://base.thep.lu.se).

295 citations

Journal ArticleDOI
TL;DR: This article describes a software framework for both authoring and distributing integrated, dynamic documents that contain text, code, data, and any auxiliary content needed to recreate the computations in data analyses, methodological descriptions, simulations, and so on.
Abstract: It is important, if not essential, to integrate the computations and code used in data analyses, methodological descriptions, simulations, and so on with the documents that describe and rely on them. This integration allows readers to both verify and adapt the claims in the documents. Authors can easily reproduce the results in the future, and they can present the document's contents in a different medium, for example, with interactive controls. This article describes a software framework for both authoring and distributing these integrated, dynamic documents that contain text, code, data, and any auxiliary content needed to recreate the computations. The documents are dynamic in that the contents—including figures, tables, and so on—can be recalculated each time a view of the document is generated. Our model treats a dynamic document as a master or “source” document from which one can generate different views in the form of traditional, derived documents for different audiences.We introduce the concept o...

272 citations

Journal ArticleDOI
TL;DR: The most comprehensive characterization of HBV integration in hepatocellular carcinoma patients is reported, and widespread random viral integration will likely increase carcinogenic opportunities in HBV-infected individuals.
Abstract: Hepatitis B virus (HBV) infection is a leading risk factor for hepatocellular carcinoma (HCC). HBV integration into the host genome has been reported, but its scale, impact and contribution to HCC development is not clear. Here, we sequenced the tumor and nontumor genomes (>80× coverage) and transcriptomes of four HCC patients and identified 255 HBV integration sites. Increased sequencing to 240× coverage revealed a proportionally higher number of integration sites. Clonal expansion of HBV-integrated hepatocytes was found specifically in tumor samples. We observe a diverse collection of genomic perturbations near viral integration sites, including direct gene disruption, viral promoter-driven human transcription, viral-human transcript fusion, and DNA copy number alteration. Thus, we report the most comprehensive characterization of HBV integration in hepatocellular carcinoma patients. Such widespread random viral integration will likely increase carcinogenic opportunities in HBV-infected individuals.

257 citations

Journal ArticleDOI
TL;DR: A well-defined procedure to address interpretation issues that can raise when gene sets have substantial overlap is provided and it is shown how standard dimension reduction methods, such as PCA, can be used to help further interpret GSEA.
Abstract: Motivation: Gene Set Enrichment Analysis (GSEA) has been developed recently to capture changes in the expression of pre-defined sets of genes. We propose number of extensions to GSEA, including the use of different statistics to describe the association between genes and phenotypes of interest. We make use of dimension reduction procedures, such as principle component analysis, to identify gene sets with correlated expression. We also address issues that arise when gene sets overlap. Results: Our proposals extend the range of applicability of GSEA and allow for adjustments based on other covariates. We have provided a well-defined procedure to address interpretation issues that can raise when gene sets have substantial overlap. We have shown how standard dimension reduction methods, such as PCA, can be used to help further interpret GSEA. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.

230 citations

Book
01 Aug 2005
TL;DR: Code underlying all of the computations that are shown is made available on a companion website, and readers can reproduce every number, figure, and table on their own computers.
Abstract: Full four-color book. Some of the editors created the Bioconductor project and Robert Gentleman is one of the two originators of R. All methods are illustrated with publicly available data, and a major section of the book is devoted to fully worked case studies. Code underlying all of the computations that are shown is made available on a companion website, and readers can reproduce every number, figure, and table on their own computers.

211 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work presents DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates, which enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression.
Abstract: In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html .

47,038 citations

Journal ArticleDOI
TL;DR: EdgeR as mentioned in this paper is a Bioconductor software package for examining differential expression of replicated count data, which uses an overdispersed Poisson model to account for both biological and technical variability and empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference.
Abstract: Summary: It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is evidence that counts for a transcript or exon are significantly different across experimental conditions. edgeR is a Bioconductor software package for examining differential expression of replicated count data. An overdispersed Poisson model is used to account for both biological and technical variability. Empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference. The methodology can be used even with the most minimal levels of replication, provided at least one phenotype or experimental condition is replicated. The software may have other applications beyond sequencing data, such as proteome peptide count data. Availability: The package is freely available under the LGPL licence from the Bioconductor web site (http://bioconductor.org).

29,413 citations

Journal ArticleDOI
TL;DR: The philosophy and design of the limma package is reviewed, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
Abstract: limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.

22,147 citations

Journal ArticleDOI
TL;DR: The GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.
Abstract: Next-generation DNA sequencing (NGS) projects, such as the 1000 Genomes Project, are already revolutionizing our understanding of genetic variation among individuals. However, the massive data sets generated by NGS—the 1000 Genome pilot alone includes nearly five terabases—make writing feature-rich, efficient, and robust analysis tools difficult for even computationally sophisticated individuals. Indeed, many professionals are limited in the scope and the ease with which they can answer scientific questions by the complexity of accessing and manipulating the data produced by these machines. Here, we discuss our Genome Analysis Toolkit (GATK), a structured programming framework designed to ease the development of efficient and robust analysis tools for next-generation DNA sequencers using the functional programming philosophy of MapReduce. The GATK provides a small but rich set of data access patterns that encompass the majority of analysis tool needs. Separating specific analysis calculations from common data management infrastructure enables us to optimize the GATK framework for correctness, stability, and CPU and memory efficiency and to enable distributed and shared memory parallelization. We highlight the capabilities of the GATK by describing the implementation and application of robust, scale-tolerant tools like coverage calculators and single nucleotide polymorphism (SNP) calling. We conclude that the GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.

20,557 citations

Posted ContentDOI
17 Nov 2014-bioRxiv
TL;DR: This work presents DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates, which enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression.
Abstract: In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-Seq data, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data. DESeq2 uses shrinkage estimation for dispersions and fold changes to improve stability and interpretability of the estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression and facilitates downstream tasks such as gene ranking and visualization. DESeq2 is available as an R/Bioconductor package.

17,014 citations