scispace - formally typeset
Search or ask a question
Author

Robert H. Cole

Bio: Robert H. Cole is an academic researcher from Columbia University. The author has contributed to research in topics: Dielectric & Dipole. The author has an hindex of 19, co-authored 26 publications receiving 10077 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a meta-modelling procedure called "Continuum Methods within MD and MC Simulations 3072", which automates the very labor-intensive and therefore time-heavy and expensive process of integrating discrete and continuous components into a discrete-time model.
Abstract: 6.2.2. Definition of Effective Properties 3064 6.3. Response Properties to Magnetic Fields 3066 6.3.1. Nuclear Shielding 3066 6.3.2. Indirect Spin−Spin Coupling 3067 6.3.3. EPR Parameters 3068 6.4. Properties of Chiral Systems 3069 6.4.1. Electronic Circular Dichroism (ECD) 3069 6.4.2. Optical Rotation (OR) 3069 6.4.3. VCD and VROA 3070 7. Continuum and Discrete Models 3071 7.1. Continuum Methods within MD and MC Simulations 3072

13,286 citations

Journal ArticleDOI
TL;DR: In this paper, the locus of the dielectric constant in the complex plane was defined to be a circular arc with end points on the axis of reals and center below this axis.
Abstract: The dispersion and absorption of a considerable number of liquid and dielectrics are represented by the empirical formula e*−e∞=(e0−e∞)/[1+(iωτ0)1−α]. In this equation, e* is the complex dielectric constant, e0 and e∞ are the ``static'' and ``infinite frequency'' dielectric constants, ω=2π times the frequency, and τ0 is a generalized relaxation time. The parameter α can assume values between 0 and 1, the former value giving the result of Debye for polar dielectrics. The expression (1) requires that the locus of the dielectric constant in the complex plane be a circular arc with end points on the axis of reals and center below this axis.If a distribution of relaxation times is assumed to account for Eq. (1), it is possible to calculate the necessary distribution function by the method of Fuoss and Kirkwood. It is, however, difficult to understand the physical significance of this formal result.If a dielectric satisfying Eq. (1) is represented by a three‐element electrical circuit, the mechanism responsible...

8,409 citations

Journal ArticleDOI
TL;DR: Fractional kinetic equations of the diffusion, diffusion-advection, and Fokker-Planck type are presented as a useful approach for the description of transport dynamics in complex systems which are governed by anomalous diffusion and non-exponential relaxation patterns.

7,412 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the electrical double-layer at a solid electrode does not in general behave as a pure capacitance but rather as an impedance displaying a frequency-independent phase angle different from 90°.

2,602 citations

Journal ArticleDOI
S. Havriliak1, S. Negami1
01 Jan 1967-Polymer
TL;DR: In this paper, it was shown that the complex deformation of the same data can be represented by a function of same form but with different values for the constants, which can be interpreted as the decay of the distortion with time of the removal of stress field.

2,483 citations