scispace - formally typeset
Search or ask a question
Author

Robert H. Shoemaker

Bio: Robert H. Shoemaker is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Cancer & In vivo. The author has an hindex of 55, co-authored 197 publications receiving 21697 citations. Previous affiliations of Robert H. Shoemaker include University of Bologna & Strong Memorial Hospital.


Papers
More filters
Journal Article
TL;DR: Since the microculture tetrazolium assay provides sensitive and reproducible indices of growth as well as drug sensitivity in individual cell lines over the course of multiple passages and several months' cultivation, it appears suitable for initial-stage in vitro drug screening.
Abstract: For the past 30 years strategies for the preclinical discovery and development of potential anticancer agents have been based largely upon the testing of agents in mice bearing transplantable leukemias and solid tumors derived from a limited number of murine as well as human sources. The feasibility of implementing an alternate approach, namely combined in vitro/in vivo screening for selective cytotoxicity among panels of human tumor cell lines derived from a broad spectrum of human solid tumors is under investigation. A group of 30 cell lines acquired from a variety of sources and representing 8 lung cancer pathologies as well as 76 cell lines representing 10 other categories of human cancer (carcinomas of colon, breast, kidney, prostate, ovary, head and neck; glioma; leukemia; melanoma; and sarcoma) have exhibited acceptable growth characteristics and suitable colorimetric profiles in a single, standard culture medium. Measurements of in vitro growth in microculture wells by cell-mediated reduction of tetrazolium showed excellent correlation (0.89 less than r2 less than 0.98) with measurements of cellular protein in adherent cell line cultures as well as viable cell count in suspension cell line cultures (0.94 less than r2 less than 0.99). Since the microculture tetrazolium assay provides sensitive and reproducible indices of growth as well as drug sensitivity in individual cell lines over the course of multiple passages and several months' cultivation, it appears suitable for initial-stage in vitro drug screening.

3,098 citations

Journal ArticleDOI
TL;DR: A pilot-scale, in vitro, anticancer drug screen utilizing a panel of 60 human tumor cell lines organized into subpanels representing leukemia, melanoma, and cancers of the lung, colon, kidney, ovary, and central nervous system is described.
Abstract: We describe here the development and implementation of a pilot-scale, in vitro, anticancer drug screen utilizing a panel of 60 human tumor cell lines organized into subpanels representing leukemia, melanoma, and cancers of the lung, colon, kidney, ovary, and central nervous system. The ultimate goal of this disease-oriented screen is to facilitate the discovery of new compounds with potential cell line-specific and/or subpanel-specific antitumor activity. In the current screening protocol, each cell line is inoculated onto microtiter plates, then preincubated for 24-28 hours. Subsequently, test agents are added in five 10-fold dilutions and the culture is incubated for an additional 48 hours. For each test agent, a dose-response profile is generated. End-point determinations of the cell viability or cell growth are performed by in situ fixation of cells, followed by staining with a protein-binding dye, sulforhodamine B (SRB). The SRB binds to the basic amino acids of cellular macromolecules; the solubilized stain is measured spectrophotometrically to determine relative cell growth or viability in treated and untreated cells. Following the pilot screening studies, a screening rate of 400 compounds per week has been consistently achieved.

3,011 citations

Journal Article
TL;DR: The new XTT reagent provides for a simplified, in vitro cell growth assay with possible applicability to a variety of problems in cellular pharmacology and biology, but still shares many of the limitations and potential pitfalls of MTT or other tetrazolium-based assays.
Abstract: We have previously described the application of an automated microculture tetrazolium assay (MTA) involving dimethyl sulfoxide solubilization of cellular-generated 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-formazan to the in vitro assessment of drug effects on cell growth (M.C. Alley et al., Proc. Am. Assoc. Cancer Res., 27:389, 1986; M.C. Alley et al., Cancer Res. 48:589-601, 1988). There are several inherent disadvantages of this assay, including the safety hazard of personnel exposure to large quantities of dimethyl sulfoxide, the deleterious effects of this solvent on laboratory equipment, and the inefficient metabolism of MTT by some human cell lines. Recognition of these limitations prompted development of possible alternative MTAs utilizing a different tetrazolium reagent, 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl] -2H- tetrazolium hydroxide (XTT), which is metabolically reduced in viable cells to a water-soluble formazan product. This reagent allows direct absorbance readings, therefore eliminating a solubilization step and shortening the microculture growth assay procedure. Most human tumor cell lines examined metabolized XTT less efficiently than MTT; however, the addition of phenazine methosulfate (PMS) markedly enhanced cellular reduction of XTT. In the presence of PMS, the XTT reagent yielded usable absorbance values for growth and drug sensitivity evaluations with a variety of cell lines. Depending on the metabolic reductive capacity of a given cell line, the optimal conditions for a 4-h XTT incubation assay were 50 micrograms of XTT and 0.15 to 0.4 microgram of PMS per well. Drug profiles obtained with representative human tumor cell lines for several standard compounds utilizing the XTT-PMS methodology were similar to the profiles obtained with MTT. Addition of PMS appeared to have little effect on the metabolism of MTT. The new XTT reagent thus provides for a simplified, in vitro cell growth assay with possible applicability to a variety of problems in cellular pharmacology and biology. However, the MTA using the XTT reagent still shares many of the limitations and potential pitfalls of MTT or other tetrazolium-based assays.

2,380 citations

Journal ArticleDOI
TL;DR: The development, use and productivity of the NCI60 screen are reviewed, highlighting several outcomes that have contributed to advances in cancer chemotherapy.
Abstract: The US National Cancer Institute (NCI) 60 human tumour cell line anticancer drug screen (NCI60) was developed in the late 1980s as an in vitro drug-discovery tool intended to supplant the use of transplantable animal tumours in anticancer drug screening. This screening model was rapidly recognized as a rich source of information about the mechanisms of growth inhibition and tumour-cell kill. Recently, its role has changed to that of a service screen supporting the cancer research community. Here I review the development, use and productivity of the screen, highlighting several outcomes that have contributed to advances in cancer chemotherapy.

2,257 citations

Journal ArticleDOI
TL;DR: A detailed comparison of data generated by each type of assay was undertaken, and results indicate that under the experimental conditions used and within the limits of the data analyses, the assays perform similarly.
Abstract: The National Cancer Institute (NCI) is implementing a large-scale in vitro drug-screening program that requires a very efficient automated assay of drug effects on tumor cell viability or growth. Many laboratories worldwide have adopted a microculture assay based on metabolic reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). However, because of certain technical advantages to use of the protein-binding dye sulforhodamine B (SRB) in a large-scale screening application, a detailed comparison of data generated by each type of assay was undertaken. The MTT and SRB assays were each used to test 197 compounds, on simultaneous days, against up to 38 human tumor cell lines representing seven major tumor categories. On subsequent days, 38 compounds were retested with the SRB assay and 25 compounds were retested with the MTT assay. For each of these three comparisons, we tabulated the differences between the two assays in the ratios of test group values to control values (T/C) for cell survival; calculated correlation coefficients for various T/C ratios; and estimated the bivariate distribution of the values for IC50 (concentration of drug resulting in T/C values of 50%, or 50% growth inhibition) for the two assays. The results indicate that under the experimental conditions used and within the limits of the data analyses, the assays perform similarly. Because the SRB assay has practical advantages for large-scale screening, however, it has been adopted for routine use in the NCI in vitro antitumor screen.

952 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The SRB assay provides a sensitive measure of drug-induced cytotoxicity, is useful in quantitating clonogenicity, and is well suited to high-volume, automated drug screening.
Abstract: We have developed a rapid, sensitive, and inexpensive method for measuring the cellular protein content of adherent and suspension cultures in 96-well microtiter plates. The method is suitable for ordinary laboratory purposes and for very large-scale applications, such as the National Cancer Institute's disease-oriented in vitro anticancer-drug discovery screen, which requires the use of several million culture wells per year. Cultures fixed with trichloroacetic acid were stained for 30 minutes with 0.4% (wt/vol) sulforhodamine B (SRB) dissolved in 1% acetic acid. Unbound dye was removed by four washes with 1% acetic acid, and protein-bound dye was extracted with 10 mM unbuffered Tris base [tris (hydroxymethyl)aminomethane] for determination of optical density in a computer-interfaced, 96-well microtiter plate reader. The SRB assay results were linear with the number of cells and with values for cellular protein measured by both the Lowry and Bradford assays at densities ranging from sparse subconfluence to multilayered supraconfluence. The signal-to-noise ratio at 564 nm was approximately 1.5 with 1,000 cells per well. The sensitivity of the SRB assay compared favorably with sensitivities of several fluorescence assays and was superior to those of both the Lowry and Bradford assays and to those of 20 other visible dyes. The SRB assay provides a colorimetric end point that is nondestructive, indefinitely stable, and visible to the naked eye. It provides a sensitive measure of drug-induced cytotoxicity, is useful in quantitating clonogenicity, and is well suited to high-volume, automated drug screening. SRB fluoresces strongly with laser excitation at 488 nm and can be measured quantitatively at the single-cell level by static fluorescence cytometry.

9,019 citations

Journal ArticleDOI
Donna M. Muzny1, Matthew N. Bainbridge1, Kyle Chang1, Huyen Dinh1  +317 moreInstitutions (24)
19 Jul 2012-Nature
TL;DR: Integrative analyses suggest new markers for aggressive colorectal carcinoma and an important role for MYC-directed transcriptional activation and repression.
Abstract: To characterize somatic alterations in colorectal carcinoma, we conducted a genome-scale analysis of 276 samples, analysing exome sequence, DNA copy number, promoter methylation and messenger RNA and microRNA expression. A subset of these samples (97) underwent low-depth-of-coverage whole-genome sequencing. In total, 16% of colorectal carcinomas were found to be hypermutated: three-quarters of these had the expected high microsatellite instability, usually with hypermethylation and MLH1 silencing, and one-quarter had somatic mismatch-repair gene and polymerase e (POLE) mutations. Excluding the hypermutated cancers, colon and rectum cancers were found to have considerably similar patterns of genomic alteration. Twenty-four genes were significantly mutated, and in addition to the expected APC, TP53, SMAD4, PIK3CA and KRAS mutations, we found frequent mutations in ARID1A, SOX9 and FAM123B. Recurrent copy-number alterations include potentially drug-targetable amplifications of ERBB2 and newly discovered amplification of IGF2. Recurrent chromosomal translocations include the fusion of NAV2 and WNT pathway member TCF7L1. Integrative analyses suggest new markers for aggressive colorectal carcinoma and an important role for MYC-directed transcriptional activation and repression.

6,883 citations

Journal ArticleDOI
TL;DR: Hypoxia-inducible factor 1 (HIF-1) activates the transcription of genes that are involved in crucial aspects of cancer biology, including angiogenesis, cell survival, glucose metabolism and invasion.
Abstract: Hypoxia-inducible factor 1 (HIF-1) activates the transcription of genes that are involved in crucial aspects of cancer biology, including angiogenesis, cell survival, glucose metabolism and invasion. Intratumoral hypoxia and genetic alterations can lead to HIF-1alpha overexpression, which has been associated with increased patient mortality in several cancer types. In preclinical studies, inhibition of HIF-1 activity has marked effects on tumour growth. Efforts are underway to identify inhibitors of HIF-1 and to test their efficacy as anticancer therapeutics.

6,024 citations

Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI
16 Jan 2014-Cell
TL;DR: Targeted metabolomic profiling and chemoproteomics revealed that GPX4 is an essential regulator of ferroptotic cancer cell death and sensitivity profiling in 177 cancer cell lines revealed that diffuse large B cell lymphomas and renal cell carcinomas are particularly susceptible to GPx4-regulated ferroPTosis.

3,457 citations