scispace - formally typeset
Search or ask a question
Author

Robert Isele

Other affiliations: Leipzig University
Bio: Robert Isele is an academic researcher from Free University of Berlin. The author has contributed to research in topics: Linked data & RDF. The author has an hindex of 13, co-authored 14 publications receiving 3088 citations. Previous affiliations of Robert Isele include Leipzig University.

Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the DBpedia community project is given, including its architecture, technical implementation, maintenance, internationalisation, usage statistics and applications, including DBpedia one of the central interlinking hubs in the Linked Open Data (LOD) cloud.
Abstract: The DBpedia community project extracts structured, multilingual knowledge from Wikipedia and makes it freely available on the Web using Semantic Web and Linked Data technologies. The project extracts knowledge from 111 different language editions of Wikipedia. The largest DBpedia knowledge base which is extracted from the English edition of Wikipedia consists of over 400 million facts that describe 3.7 million things. The DBpedia knowledge bases that are extracted from the other 110 Wikipedia editions together consist of 1.46 billion facts and describe 10 million additional things. The DBpedia project maps Wikipedia infoboxes from 27 different language editions to a single shared ontology consisting of 320 classes and 1,650 properties. The mappings are created via a world-wide crowd-sourcing effort and enable knowledge from the different Wikipedia editions to be combined. The project publishes releases of all DBpedia knowledge bases for download and provides SPARQL query access to 14 out of the 111 language editions via a global network of local DBpedia chapters. In addition to the regular releases, the project maintains a live knowledge base which is updated whenever a page in Wikipedia changes. DBpedia sets 27 million RDF links pointing into over 30 external data sources and thus enables data from these sources to be used together with DBpedia data. Several hundred data sets on the Web publish RDF links pointing to DBpedia themselves and make DBpedia one of the central interlinking hubs in the Linked Open Data (LOD) cloud. In this system report, we give an overview of the DBpedia community project, including its architecture, technical implementation, maintenance, internationalisation, usage statistics and applications.

2,856 citations

Book ChapterDOI
11 Nov 2012
TL;DR: The LOD2 Stack is an integrated distribution of aligned tools which support the whole life cycle of Linked Data from extraction, authoring/creation via enrichment, interlinking, fusing to maintenance.
Abstract: The LOD2 Stack is an integrated distribution of aligned tools which support the whole life cycle of Linked Data from extraction, authoring/creation via enrichment, interlinking, fusing to maintenance. The LOD2 Stack comprises new and substantially extended existing tools from the LOD2 project partners and third parties. The stack is designed to be versatile; for all functionality we define clear interfaces, which enable the plugging in of alternative third-party implementations. The architecture of the LOD2 Stack is based on three pillars: ( 1 ) Software integration and deployment using the Debian packaging system. ( 2 ) Use of a central SPARQL endpoint and standardized vocabularies for knowledge base access and integration between the different tools of the LOD2 Stack. ( 3 ) Integration of the LOD2 Stack user interfaces based on REST enabled Web Applications. These three pillars comprise the methodological and technological framework for integrating the very heterogeneous LOD2 Stack components into a consistent framework. In this article we describe these pillars in more detail and give an overview of the individual LOD2 Stack components. The article also includes a description of a real-world usage scenario in the publishing domain.

116 citations

Proceedings Article
01 Jan 2011
TL;DR: This work proposes a novel blocking method called MultiBlock which uses a multidimensional index in which similar objects are located near each other which works on complex link specications which aggregate several dierent similarity measures.
Abstract: Over the last three years, an increasing number of data providers have started to publish structured data according to the Linked Data principles on the Web. The resulting Web of Data currently consists of over 28 billion RDF triples. As the Web of Data grows, there is an increasing need for link discovery tools which scale to very large datasets. In record linkage, many partitioning methods have been proposed which substantially reduce the number of required entity comparisons. Unfortunately, most of these methods either lead to a decrease in recall or only work on metric spaces. We propose a novel blocking method called MultiBlock which uses a multidimensional index in which similar objects are located near each other. In each dimension the entities are indexed by a dierent property increasing the efciency of the index signicantly. In addition, it guarantees that no false dismissals can occur. Our approach works on complex link specications which aggregate several dierent similarity measures. MultiBlock has been implemented as part of the Silk Link Discovery Framework. The evaluation shows a speedup factor of several 100 for large datasets compared to the full evaluation without losing recall.

110 citations

Journal ArticleDOI
01 Jul 2012
TL;DR: GenLink as discussed by the authors learns linkage rules from a set of existing reference links using genetic programming, which is capable of generating linkage rules which select discriminative properties for comparison, apply chains of data transformations to normalize property values, choose appropriate distance measures and thresholds and combine the results of multiple comparisons using non-linear aggregation functions.
Abstract: A central problem in data integration and data cleansing is to find entities in different data sources that describe the same real-world object. Many existing methods for identifying such entities rely on explicit linkage rules which specify the conditions that entities must fulfill in order to be considered to describe the same real-world object. In this paper, we present the GenLink algorithm for learning expressive linkage rules from a set of existing reference links using genetic programming. The algorithm is capable of generating linkage rules which select discriminative properties for comparison, apply chains of data transformations to normalize property values, choose appropriate distance measures and thresholds and combine the results of multiple comparisons using non-linear aggregation functions. Our experiments show that the GenLink algorithm outperforms the state-of-the-art genetic programming approach to learning linkage rules recently presented by Carvalho et. al. and is capable of learning linkage rules which achieve a similar accuracy as human written rules for the same problem.

107 citations

09 Nov 2010
TL;DR: LDSpider traverses the Web of Linked Data by following RDF links between data items, it supports different crawling strategies and allows crawled data to be stored either in files or in an RDF store.
Abstract: The Web of Linked Data is growing and currently consists of several hundred interconnected data sources altogether serving over 25 billion RDF triples to the Web. What has hampered the exploitation of this global dataspace up till now is the lack of an open-source Linked Data crawler which can be employed by Linked Data applications to localize (parts of) the dataspace for further processing. With LDSpider, we are closing this gap in the landscape of publicly available Linked Data tools. LDSpider traverses the Web of Linked Data by following RDF links between data items, it supports different crawling strategies and allows crawled data to be stored either in files or in an RDF store.

104 citations


Cited by
More filters
Proceedings Article
07 Dec 2015
TL;DR: In this paper, the use of character-level convolutional networks (ConvNets) for text classification has been explored and compared with traditional models such as bag of words, n-grams and their TFIDF variants.
Abstract: This article offers an empirical exploration on the use of character-level convolutional networks (ConvNets) for text classification. We constructed several large-scale datasets to show that character-level convolutional networks could achieve state-of-the-art or competitive results. Comparisons are offered against traditional models such as bag of words, n-grams and their TFIDF variants, and deep learning models such as word-based ConvNets and recurrent neural networks.

3,052 citations

Book
05 Jun 2007
TL;DR: The second edition of Ontology Matching has been thoroughly revised and updated to reflect the most recent advances in this quickly developing area, which resulted in more than 150 pages of new content.
Abstract: Ontologies tend to be found everywhere. They are viewed as the silver bullet for many applications, such as database integration, peer-to-peer systems, e-commerce, semantic web services, or social networks. However, in open or evolving systems, such as the semantic web, different parties would, in general, adopt different ontologies. Thus, merely using ontologies, like using XML, does not reduce heterogeneity: it just raises heterogeneity problems to a higher level. Euzenat and Shvaikos book is devoted to ontology matching as a solution to the semantic heterogeneity problem faced by computer systems. Ontology matching aims at finding correspondences between semantically related entities of different ontologies. These correspondences may stand for equivalence as well as other relations, such as consequence, subsumption, or disjointness, between ontology entities. Many different matching solutions have been proposed so far from various viewpoints, e.g., databases, information systems, and artificial intelligence. The second edition of Ontology Matching has been thoroughly revised and updated to reflect the most recent advances in this quickly developing area, which resulted in more than 150 pages of new content. In particular, the book includes a new chapter dedicated to the methodology for performing ontology matching. It also covers emerging topics, such as data interlinking, ontology partitioning and pruning, context-based matching, matcher tuning, alignment debugging, and user involvement in matching, to mention a few. More than 100 state-of-the-art matching systems and frameworks were reviewed. With Ontology Matching, researchers and practitioners will find a reference book that presents currently available work in a uniform framework. In particular, the work and the techniques presented in this book can be equally applied to database schema matching, catalog integration, XML schema matching and other related problems. The objectives of the book include presenting (i) the state of the art and (ii) the latest research results in ontology matching by providing a systematic and detailed account of matching techniques and matching systems from theoretical, practical and application perspectives.

2,579 citations

Book
02 Feb 2011
TL;DR: This Synthesis lecture provides readers with a detailed technical introduction to Linked Data, including coverage of relevant aspects of Web architecture, as the basis for application development, research or further study.
Abstract: The World Wide Web has enabled the creation of a global information space comprising linked documents. As the Web becomes ever more enmeshed with our daily lives, there is a growing desire for direct access to raw data not currently available on the Web or bound up in hypertext documents. Linked Data provides a publishing paradigm in which not only documents, but also data, can be a first class citizen of the Web, thereby enabling the extension of the Web with a global data space based on open standards - the Web of Data. In this Synthesis lecture we provide readers with a detailed technical introduction to Linked Data. We begin by outlining the basic principles of Linked Data, including coverage of relevant aspects of Web architecture. The remainder of the text is based around two main themes - the publication and consumption of Linked Data. Drawing on a practical Linked Data scenario, we provide guidance and best practices on: architectural approaches to publishing Linked Data; choosing URIs and vocabularies to identify and describe resources; deciding what data to return in a description of a resource on the Web; methods and frameworks for automated linking of data sets; and testing and debugging approaches for Linked Data deployments. We give an overview of existing Linked Data applications and then examine the architectures that are used to consume Linked Data from the Web, alongside existing tools and frameworks that enable these. Readers can expect to gain a rich technical understanding of Linked Data fundamentals, as the basis for application development, research or further study.

2,174 citations

Posted Content
TL;DR: This article constructed several large-scale datasets to show that character-level convolutional networks could achieve state-of-the-art or competitive results in text classification.
Abstract: This article offers an empirical exploration on the use of character-level convolutional networks (ConvNets) for text classification. We constructed several large-scale datasets to show that character-level convolutional networks could achieve state-of-the-art or competitive results. Comparisons are offered against traditional models such as bag of words, n-grams and their TFIDF variants, and deep learning models such as word-based ConvNets and recurrent neural networks.

1,963 citations

Journal ArticleDOI
TL;DR: This article provides a systematic review of existing techniques of Knowledge graph embedding, including not only the state-of-the-arts but also those with latest trends, based on the type of information used in the embedding task.
Abstract: Knowledge graph (KG) embedding is to embed components of a KG including entities and relations into continuous vector spaces, so as to simplify the manipulation while preserving the inherent structure of the KG. It can benefit a variety of downstream tasks such as KG completion and relation extraction, and hence has quickly gained massive attention. In this article, we provide a systematic review of existing techniques, including not only the state-of-the-arts but also those with latest trends. Particularly, we make the review based on the type of information used in the embedding task. Techniques that conduct embedding using only facts observed in the KG are first introduced. We describe the overall framework, specific model design, typical training procedures, as well as pros and cons of such techniques. After that, we discuss techniques that further incorporate additional information besides facts. We focus specifically on the use of entity types, relation paths, textual descriptions, and logical rules. Finally, we briefly introduce how KG embedding can be applied to and benefit a wide variety of downstream tasks such as KG completion, relation extraction, question answering, and so forth.

1,905 citations