scispace - formally typeset
Search or ask a question
Author

Robert Ivkov

Bio: Robert Ivkov is an academic researcher from Johns Hopkins University School of Medicine. The author has contributed to research in topics: Magnetic nanoparticles & Iron oxide nanoparticles. The author has an hindex of 37, co-authored 105 publications receiving 4980 citations. Previous affiliations of Robert Ivkov include Los Alamos National Laboratory & McMaster University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the influence of particle chain formation on the normalized heating properties, or specific loss power (SLP) of both low-spherical and high-parallelepiped anisotropy ferrite-based magnetic fluids was explored.
Abstract: Nanostructured magnetic systems have many applications, including potential use in cancer therapy deriving from their ability to heat in alternating magnetic fields. In this work we explore the influence of particle chain formation on the normalized heating properties, or specific loss power (SLP) of both low- (spherical) and high- (parallelepiped) anisotropy ferrite-based magnetic fluids. Analysis of ferromagnetic resonance (FMR) data shows that high particle concentrations correlate with increasing chain length producing decreasing SLP. Monte Carlo simulations corroborate the FMR results. We propose a theoretical model describing dipole interactions valid for the linear response regime to explain the observed trends. This model predicts optimum particle sizes for hyperthermia to about 30% smaller than those previously predicted, depending on the nanoparticle parameters and chain size. Also, optimum chain lengths depended on nanoparticle surface-to-surface distance. Our results might have important implications to cancer treatment and could motivate new strategies to optimize magnetic hyperthermia.

513 citations

Journal ArticleDOI
TL;DR: Analysis of ferromagnetic resonance data shows that high particle concentrations correlate with increasing chain length producing decreasing SLP, and a theoretical model describing dipole interactions valid for the linear response regime is proposed, predicting optimum particle sizes for hyperthermia to about 30% smaller than those previously predicted, depending on the nanoparticle parameters and chain size.
Abstract: Nanostructured magnetic systems have many applications, including potential use in cancer therapy deriving from their ability to heat in alternating magnetic fields. In this work we explore the influence of particle chain formation on the normalized heating properties, or specific loss power (SLP) of both low- (spherical) and high- (parallelepiped) anisotropy ferrite-based magnetic fluids. Analysis of ferromagnetic resonance (FMR) data shows that high particle concentrations correlate with increasing chain length producing decreasing SLP. Monte Carlo simulations corroborate the FMR results. We propose a theoretical model describing dipole interactions valid for the linear response regime to explain the observed trends. This model predicts optimum particle sizes for hyperthermia to about 30% smaller than those previously predicted, depending on the nanoparticle parameters and chain size. Also, optimum chain lengths depended on nanoparticle surface-to-surface distance. Our results might have important implications to cancer treatment and could motivate new strategies to optimize magnetic hyperthermia.

323 citations

Journal ArticleDOI
TL;DR: A summary of the literature describing the properties of nanometer-scale magnetic materials suspended in biocompatible fluids and their interactions with external magnetic fields and the implicit assumptions underlying these analytical models are provided.
Abstract: Magnetic nanoparticle hyperthermia and thermal ablation have been actively studied experimentally and theoretically. In this review, we provide a summary of the literature describing the properties of nanometer-scale magnetic materials suspended in biocompatible fluids and their interactions with external magnetic fields. Summarised are the properties and mechanisms understood to be responsible for magnetic heating, and the models developed to understand the behaviour of single-domain magnets exposed to alternating magnetic fields. Linear response theory and its assumptions have provided a useful beginning point; however, its limitations are apparent when nanoparticle heating is measured over a wide range of magnetic fields. Well-developed models (e.g. for magnetisation reversal mechanisms and pseudo-single domain formation) available from other fields of research are explored. Some of the methods described include effects of moment relaxation, anisotropy, nanoparticle and moment rotation mechanisms, interactions and collective behaviour, which have been experimentally identified to be important. Here, we will discuss the implicit assumptions underlying these analytical models and their relevance to experiments. Numerical simulations will be discussed as an alternative to these simple analytical models, including their applicability to experimental data. Finally, guidelines for the design of optimal magnetic nanoparticles will be presented.

255 citations

Journal ArticleDOI
TL;DR: Experimental evidence demonstrates that for interacting magnetite nanoparticles, determined by their spacing and anisotropy, the resulting collective behavior in the kilohertz frequency regime generates significant heat, leading to nearly complete regression of aggressive mammary tumors in mice.
Abstract: One potential cancer treatment selectively deposits heat to the tumor through activation of magnetic nanoparticles inside the tumor. This can damage or kill the cancer cells without harming the surrounding healthy tissue. The properties assumed to be most important for this heat generation (saturation magnetization, amplitude and frequency of external magnetic field) originate from theoretical models that assume non-interacting nanoparticles. Although these factors certainly contribute, the fundamental assumption of 'no interaction' is flawed and consequently fails to anticipate their interactions with biological systems and the resulting heat deposition. Experimental evidence demonstrates that for interacting magnetite nanoparticles, determined by their spacing and anisotropy, the resulting collective behavior in the kilohertz frequency regime generates significant heat, leading to nearly complete regression of aggressive mammary tumors in mice.

240 citations

Journal ArticleDOI
TL;DR: In this review, the application of MHT as a therapeutic modality for GBM will be discussed, its therapeutic efficacy, technical details, and major experimental and clinical findings will be reviewed and analysed.
Abstract: Hyperthermia therapy (HT) is the exposure of a region of the body to elevated temperatures to achieve a therapeutic effect. HT anticancer properties and its potential as a cancer treatment have been studied for decades. Techniques used to achieve a localised hyperthermic effect include radiofrequency, ultrasound, microwave, laser and magnetic nanoparticles (MNPs). The use of MNPs for therapeutic hyperthermia generation is known as magnetic hyperthermia therapy (MHT) and was first attempted as a cancer therapy in 1957. However, despite more recent advancements, MHT has still not become part of the standard of care for cancer treatment. Certain challenges, such as accurate thermometry within the tumour mass and precise tumour heating, preclude its widespread application as a treatment modality for cancer. MHT is especially attractive for the treatment of glioblastoma (GBM), the most common and aggressive primary brain cancer in adults, which has no cure. In this review, the application of MHT as a therapeutic modality for GBM will be discussed. Its therapeutic efficacy, technical details, and major experimental and clinical findings will be reviewed and analysed. Finally, current limitations, areas of improvement, and future directions will be discussed in depth.

234 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Perspective explores and explains the fundamental dogma of nanoparticle delivery to tumours and answers two central questions: ‘ how many nanoparticles accumulate in a tumour?’ and ‘how does this number affect the clinical translation of nanomedicines?'
Abstract: This Perspective explores and explains the fundamental dogma of nanoparticle delivery to tumours and answers two central questions: ‘how many nanoparticles accumulate in a tumour?’ and ‘how does this number affect the clinical translation of nanomedicines?’

3,335 citations

Journal ArticleDOI
TL;DR: A background to investigators new to stealth nanoparticles is presented, and some key considerations needed prior to designing a nanoparticle PEGylation protocol and characterizing the performance features of the product are suggested.

1,791 citations

Journal ArticleDOI
TL;DR: Biocompatibility, Pharmaceutical and Biomedical Applications L. Harivardhan Reddy,‡ Jose ́ L. Arias, Julien Nicolas,† and Patrick Couvreur*,†.
Abstract: Biocompatibility, Pharmaceutical and Biomedical Applications L. Harivardhan Reddy,†,‡ Jose ́ L. Arias, Julien Nicolas,† and Patrick Couvreur*,† †Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Universite ́ Paris-Sud XI, UMR CNRS 8612, Faculte ́ de Pharmacie, IFR 141, 5 rue Jean-Baptiste Cleḿent, F-92296 Chat̂enay-Malabry, France Departamento de Farmacia y Tecnología Farmaceútica, Facultad de Farmacia, Campus Universitario de Cartuja s/n, Universidad de Granada, 18071 Granada, Spain ‡Pharmaceutical Sciences Department, Sanofi, 13 Quai Jules Guesdes, F-94403 Vitry-sur-Seine, France

1,705 citations

Journal ArticleDOI
TL;DR: Potential opportunities for the combination of hyperthermia-based therapy and controlled drug release paradigms--towards successful application in personalized medicine are portrayed.

1,380 citations