scispace - formally typeset
Search or ask a question
Author

Robert J. Bell

Bio: Robert J. Bell is an academic researcher from Missouri University of Science and Technology. The author has contributed to research in topics: Electromagnetic radiation & Far infrared. The author has an hindex of 17, co-authored 59 publications receiving 4153 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The data for the noble metals and Al, Pb, and W can be reasonably fit using the Drude model and it is shown that -epsilon1(omegas) = epsilon2(omega) approximately omega(2)(p)/(2omega( 2)(tau) at the damping frequency omega = omega(tau), where the plasma frequency is omega(p).
Abstract: Infrared optical constants collected from the literature are tabulated. The data for the noble metals and Al, Pb, and W can be reasonably fit using the Drude model. It is shown that -epsilon1(omega) = epsilon2(omega) approximately omega(2)(p)/(2omega(2)(tau)) at the damping frequency omega = omega(tau). Also -epsilon1(omega(tau)) approximately - (1/2) epsilon1(0), where the plasma frequency is omega(p).

2,014 citations

Journal ArticleDOI
TL;DR: Refinements in the fitting technique have resulted in only slight changes in the Drude model parameters for Al, Au, Ag, and W, and the optical resistivity has been calculated from the Druded model parameters ωτ and ωp and compared to handbook values for the dc resistivity.
Abstract: Infrared optical constants collected from the literature are tabulated for Mo and V. New data are presented for Cu, Fe, and Ni. Drude model parameters ωτ and ωp are given for the fourteen metals Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. The Drude model parameters for Cu are revised from our earlier tabulation due to the availability of additional data. Refinements in our fitting technique have resulted in only slight changes in the Drude model parameters for Al, Au, Ag, and W. The Drude model parameters for Pb correct a numerical error in our earlier tabulation. For all fourteen metals, the optical resistivity has been calculated from the Drude model parameters ωτ and ωp and compared to handbook values for the dc resistivity.

1,126 citations

Journal ArticleDOI
TL;DR: This work has used a nonresonant cavity to measure the angle averaged absorptance spectra P(omega) of aluminum, molybdenum, tantalum, titanium, tungsten, and iron in the 30-300-cm(-1) wavenumber region.
Abstract: Measurements of the optical constants of metals at submillimeter wavelengths are sparse. We have used a nonresonant cavity to measure, at room temperature, the angle averaged absorptance spectra P(omega) of aluminum, molybdenum, tantalum, titanium, tungsten, and iron in the 30-300-cm(-1) wavenumber region. The real part of the normalized surface impedance spectrum, z(omega) = r(omega) + ix(omega), was determined from P(omega). Measurements were also made on iron from 400 to 4000 cm(-1) using standard reflectance techniques. The r(omega) spectrum was combined with previous measurements by others at higher frequencies and Kramers-Kronig analyses of the resultant combined r(omega) spectra provided epsilon(omega) = epsilon(1)(omega) + iepsilon(2)(omega) and N(omega) = n(omega) + ik(omega).

354 citations

Journal ArticleDOI
TL;DR: An exact analytical expression for P(omega) of a metal is derived by using a nonresonant cavity to measure at ambient temperature the angle averaged absorptance spectra of gold, nickel, and lead in the 30-300-cm(-1) wave-number region.
Abstract: Measurements of the optical properties, and thus the optical constants, of metals at submillimeter wavelengths are almost nonexistent. We used a nonresonant cavity to measure at ambient temperature the angle averaged absorptance spectra P(ω) of gold, nickel, and lead in the 30–300-cm−1 wave-number region. The real part of the normalized surface impedance spectrum z(ω) = r(ω) + ix(ω) was determined from P(ω). The r(ω) spectrum was combined with previous measurements by others at higher frequencies, and Kramers-Kronig analyses of the resultant r(ω) spectra provided ∊(ω) = ∊1(ω) + i∊2(ω) and N(ω) = n(ω) + ik(ω) for gold and nickel in the 35–15,000-cm−1 region and for lead in the 15–15,000-cm−1 region. We also derived an exact analytical expression for P(ω) of a metal.

251 citations

Journal ArticleDOI
TL;DR: In this article, the complex indices of refraction for crystalline gypsum and calcite were determined from reflectance measurements for both single crystals and pressed powder pellets using a classical dispersive analysis (DA) of the reflectance data.

78 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity, and molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth.
Abstract: This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided.

7,638 citations

Book
15 May 2007
TL;DR: In this paper, the authors discuss the role of surface plasmon polaritons at metal/insulator interfaces and their application in the propagation of surfaceplasmon waveguides.
Abstract: Fundamentals of Plasmonics.- Electromagnetics of Metals.- Surface Plasmon Polaritons at Metal / Insulator Interfaces.- Excitation of Surface Plasmon Polaritons at Planar Interfaces.- Imaging Surface Plasmon Polariton Propagation.- Localized Surface Plasmons.- Electromagnetic Surface Modes at Low Frequencies.- Applications.- Plasmon Waveguides.- Transmission of Radiation Through Apertures and Films.- Enhancement of Emissive Processes and Nonlinearities.- Spectroscopy and Sensing.- Metamaterials and Imaging with Surface Plasmon Polaritons.- Concluding Remarks.

7,238 citations

Journal ArticleDOI
TL;DR: Main application areas are outlined and examples of applications of SPR sensor technology are presented and future prospects of SPR technology are discussed.
Abstract: Since the first application of the surface plasmon resonance (SPR) phenomenon for sensing almost two decades ago, this method has made great strides both in terms of instrumentation development and applications. SPR sensor technology has been commercialized and SPR biosensors have become a central tool for characterizing and quantifying biomolecular interactions. This paper attempts to review the major developments in SPR technology. Main application areas are outlined and examples of applications of SPR sensor technology are presented. Future prospects of SPR sensor technology are discussed.

5,127 citations

Journal ArticleDOI
TL;DR: The reflectance and the phase change on reflection from semiconductor-metal interfaces (including the case of metallic multilayers) can be accurately described by use of the proposed models for the optical functions of metallic films and the matrix method for multilayer calculations.
Abstract: We present models for the optical functions of 11 metals used as mirrors and contacts in optoelectronic and optical devices: noble metals (Ag, Au, Cu), aluminum, beryllium, and transition metals (Cr, Ni, Pd, Pt, Ti, W). We used two simple phenomenological models, the Lorentz-Drude (LD) and the Brendel-Bormann (BB), to interpret both the free-electron and the interband parts of the dielectric response of metals in a wide spectral range from 0.1 to 6 eV. Our results show that the BB model was needed to describe appropriately the interband absorption in noble metals, while for Al, Be, and the transition metals both models exhibit good agreement with the experimental data. A comparison with measurements on surface normal structures confirmed that the reflectance and the phase change on reflection from semiconductor-metal interfaces (including the case of metallic multilayers) can be accurately described by use of the proposed models for the optical functions of metallic films and the matrix method for multilayer calculations.

3,629 citations

Journal ArticleDOI
Na Liu1, Martin Mesch1, Thomas Weiss1, Mario Hentschel1, Harald Giessen1 
TL;DR: A perfect plasmonic absorber is experimentally demonstrated at lambda = 1.6 microm, its polarization-independent absorbance is 99% at normal incidence and remains very high over a wide angular range of incidence around +/-80 degrees.
Abstract: We experimentally demonstrate a perfect plasmonic absorber at λ = 1.6 μm. Its polarization-independent absorbance is 99% at normal incidence and remains very high over a wide angular range of incidence around ±80°. We introduce a novel concept to utilize this perfect absorber as plasmonic sensor for refractive index sensing. This sensing strategy offers great potential to maintain the performance of localized surface plasmon sensors even in nonlaboratory environments due to its simple and robust measurement scheme.

2,504 citations