scispace - formally typeset
Search or ask a question
Author

Robert J. Hunter

Bio: Robert J. Hunter is an academic researcher from University of Sydney. The author has contributed to research in topics: Zeta potential & Particle size. The author has an hindex of 34, co-authored 92 publications receiving 12272 citations.


Papers
More filters
Book
19 Mar 1987
TL;DR: The structure of concentrated dispersions thin films Emulsions Microemulsions Rheology of colloidal dispersions and their properties are described in detail in this paper, with a focus on statistical mechanics of fluids.
Abstract: Introduction to statistical mechanics of fluids Adsorption from Solution The electrokinetic effects The structure of concentrated dispersions Thin films Emulsions Microemulsions Rheology of colloidal dispersions.

3,325 citations

Book
01 Jan 1981

1,928 citations

Journal ArticleDOI
TL;DR: The recommendations given in the report apply mainly to smooth and homogeneous solid particles and plugs in aqueous systems; some attention is paid to nonaqueous media and less ideal surfaces.

1,160 citations

Journal ArticleDOI
TL;DR: In this article, the status quo and recent progress in electrokinetics are reviewed, and a thorough description of the main electrokinetic methods is given: special attention is paid to their ranges of applicability as well as to the validity of the underlying theoretical models.
Abstract: In this report, the status quo and recent progress in electrokinetics are reviewed. Practical rules are recommended for performing electrokinetic measurements and interpreting their results in terms of well-defined quantities, the most familiar being the ?-potential or electrokinetic potential. This potential is a property of charged interfaces, and it should be independent of the technique used for its determination. However, often the ?-potential is not the only property electrokinetically characterizing the electrical state of the interfacial region: the excess conductivity of the stagnant layer is an additional parameter. The requirement to obtain the ?-potential is that electrokinetic theories be correctly used and applied within their range of validity. Basic theories and their application ranges are discussed. A thorough description of the main electrokinetic methods is given: special attention is paid to their ranges of applicability as well as to the validity of the underlying theoretical models. Electrokinetic consistency tests are proposed in order to assess the validity of the ?-potentials obtained. The recommendations given in the report apply mainly to smooth and homogeneous solid particles and plugs in aqueous systems; some attention is paid to nonaqueous media and less ideal surfaces

499 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena as mentioned in this paper.
Abstract: Microfabricated integrated circuits revolutionized computation by vastly reducing the space, labor, and time required for calculations. Microfluidic systems hold similar promise for the large-scale automation of chemistry and biology, suggesting the possibility of numerous experiments performed rapidly and in parallel, while consuming little reagent. While it is too early to tell whether such a vision will be realized, significant progress has been achieved, and various applications of significant scientific and practical interest have been developed. Here a review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena. Specifically, this review explores the Reynolds number Re, addressing inertial effects; the Peclet number Pe, which concerns convective and diffusive transport; the capillary number Ca expressing the importance of interfacial tension; the Deborah, Weissenberg, and elasticity numbers De, Wi, and El, describing elastic effects due to deformable microstructural elements like polymers; the Grashof and Rayleigh numbers Gr and Ra, describing density-driven flows; and the Knudsen number, describing the importance of noncontinuum molecular effects. Furthermore, the long-range nature of viscous flows and the small device dimensions inherent in microfluidics mean that the influence of boundaries is typically significant. A variety of strategies have been developed to manipulate fluids by exploiting boundary effects; among these are electrokinetic effects, acoustic streaming, and fluid-structure interactions. The goal is to describe the physics behind the rich variety of fluid phenomena occurring on the nanoliter scale using simple scaling arguments, with the hopes of developing an intuitive sense for this occasionally counterintuitive world.

4,044 citations

Journal ArticleDOI
TL;DR: The atomic force microscope (AFM) is not only used to image the topography of solid surfaces at high resolution but also to measure force-versus-distance curves as discussed by the authors, which provide valuable information on local material properties such as elasticity, hardness, Hamaker constant, adhesion and surface charge densities.

3,281 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of four-Wave Mixing and its applications in nanofiltration, which shows clear trends in high-performance liquid chromatography and also investigates the role of nano-magnifying lens technology in this process.
Abstract: 12.2.2. Four-Wave Mixing (FWM) 4849 12.2.3. Dye Aggregation 4850 12.2.4. Optoelectronic Nanodevices 4850 12.3. Sensor 4851 12.3.1. Chemical Sensor 4851 12.3.2. Biological Sensor 4851 12.4. Catalysis 4852 13. Conclusion and Perspectives 4852 14. Abbreviations 4853 15. Acknowledgements 4854 16. References 4854 * Corresponding author E-mail: tpal@chem.iitkgp.ernet.in. † Raidighi College. § Indian Institute of Technology. 4797 Chem. Rev. 2007, 107, 4797−4862

2,414 citations

Journal ArticleDOI
TL;DR: An overview of polymer-clay hybrid nanocomposites is provided with emphasis placed on the use of alkylammonium exchanged smectite clays as the reinforcement phase in selected polymer matrices as discussed by the authors.

2,403 citations

Journal ArticleDOI
TL;DR: This work has shown that coherent oscillations of conduction electrons on a metal surface excited by electromagnetic radiation at a metal -dielectric interface can be associated with surface plasmons, which have potential applications in miniaturized optical devices, sensors, and photonic circuits.
Abstract: Surface plasmons (SPs) are coherent oscillations of conduction electrons on a metal surface excited by electromagnetic radiation at a metal -dielectric interface. The growing field of research on such light -metal interactions is known as ‘plasmonics’. 1-3 This branch of research has attracted much attention due to its potential applications in miniaturized optical devices, sensors, and photonic circuits as well as in medical diagnostics and therapeutics. 4-8

2,284 citations