scispace - formally typeset
Search or ask a question
Author

Robert J.K. Wood

Bio: Robert J.K. Wood is an academic researcher from University of Southampton. The author has contributed to research in topics: Coating & Corrosion. The author has an hindex of 56, co-authored 314 publications receiving 10439 citations. Previous affiliations of Robert J.K. Wood include University of Westminster & Australian National University.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of antifouling coatings for the prevention of marine biological fouling can be found in this article, where the authors highlight modern approaches to environmentally effective anti-fouling systems and their performance.
Abstract: Marine structures such as platforms, jetties and ship hulls are subject to diverse and severe biofouling. Methods for inhibiting both organic and inorganic growth on wetted substrates are varied but most antifouling systems take the form of protective coatings. Biofouling can negatively affect the hydrodynamics of a hull by increasing the required propulsive power and the fuel consumption. This paper reviews the development of antifouling coatings for the prevention of marine biological fouling. As a result of the 2001 International Maritime Organization (IMO) ban on tributyltin (TBT), replacement antifouling coatings have to be environmentally acceptable as well as maintain a long life. Tin-free self-polishing copolymer (SPC) and foul release technologies are current applications but many alternatives have been suggested. Modern approaches to environmentally effective antifouling systems and their performance are highlighted.

884 citations

Journal ArticleDOI
TL;DR: In this paper, the principles and applications of the PEO coating process are considered, including the fundamentals of oxide deposition, the technology involved and the typical characteristics of the coatings.
Abstract: The introduction of plasma electrolytic oxidation (PEO) as a surface finishing technique has enabled a range of hard, dense oxide coatings to be produced on aluminium, magnesium, titanium and other lightweight alloy substrates. As with all surface coating technologies, successful development of PEO coatings requires adequate attention to substrate pretreatment together with careful control of electrolyte conditions and process variables. The principles and applications of the PEO coating process are considered, including the fundamentals of oxide deposition, the technology involved and the typical characteristics of the coatings. Industrial applications are considered together with their coating requirements. Plasma electrolytic oxidation coating is a specialised but well developed process. Suitable control of electrolyte and process conditions can realise a novel range of coatings having technologically attractive physical and chemical properties. The development of PEO technology over the last decade has provided coatings having controlled appearance, hardness, corrosion resistance and other tribological properties across an extending range of industrial sectors. Continuing developments are concisely reviewed and the PEO process is illustrated by the characterisation of anodised coatings on an AZ91 magnesium alloy surface.

267 citations

Journal ArticleDOI
20 Nov 2006-Wear
TL;DR: In this paper, the authors reviewed the rationale behind the selection of erosion resistance surfaces for fluid handling equipment and highlighted the complexities encountered when these surfaces are exposed to environments which contain sand particles or cavitation in a corrosive medium.

233 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed previously published research into usage of diamond-like carbon (DLC) coatings for hip implant failures and concluded that they seem to be an effective coating for implants but with the variance in results, further testing is required for clarification of use.

232 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: The common design motifs of a range of natural structural materials are reviewed, and the difficulties associated with the design and fabrication of synthetic structures that mimic the structural and mechanical characteristics of their natural counterparts are discussed.
Abstract: Natural structural materials are built at ambient temperature from a fairly limited selection of components. They usually comprise hard and soft phases arranged in complex hierarchical architectures, with characteristic dimensions spanning from the nanoscale to the macroscale. The resulting materials are lightweight and often display unique combinations of strength and toughness, but have proven difficult to mimic synthetically. Here, we review the common design motifs of a range of natural structural materials, and discuss the difficulties associated with the design and fabrication of synthetic structures that mimic the structural and mechanical characteristics of their natural counterparts.

3,083 citations

Journal ArticleDOI
TL;DR: The major strategies for designing surfaces that prevent fouling due to proteins, bacteria, and marine organisms are reviewed and ongoing research in this area should result in the development of even better antifouling materials in the future.
Abstract: The major strategies for designing surfaces that prevent fouling due to proteins, bacteria, and marine organisms are reviewed. Biofouling is of great concern in numerous applications ranging from biosensors to biomedical implants and devices, and from food packaging to industrial and marine equipment. The two major approaches to combat surface fouling are based on either preventing biofoulants from attaching or degrading them. One of the key strategies for imparting adhesion resistance involves the functionalization of surfaces with poly(ethylene glycol) (PEG) or oligo(ethylene glycol). Several alternatives to PEG-based coatings have also been designed over the past decade. While protein-resistant coatings may also resist bacterial attachment and subsequent biofilm formation, in order to overcome the fouling-mediated risk of bacterial infection it is highly desirable to design coatings that are bactericidal. Traditional techniques involve the design of coatings that release biocidal agents, including antibiotics, quaternary ammonium salts (QAS), and silver, into the surrounding aqueous environment. However, the emergence of antibiotic- and silver-resistant pathogenic strains has necessitated the development of alternative strategies. Therefore, other techniques based on the use of polycations, enzymes, nanomaterials, and photoactive agents are being investigated. With regard to marine antifouling coatings, restrictions on the use of biocide-releasing coatings have made the generation of nontoxic antifouling surfaces more important. While considerable progress has been made in the design of antifouling coatings, ongoing research in this area should result in the development of even better antifouling materials in the future.

2,278 citations

Journal ArticleDOI
TL;DR: The fundamentals, challenges, and latest exciting advances related to zinc-air research are presented, and the detrimental effect of CO2 on battery performance is emphasized, and possible solutions summarized.
Abstract: Zinc–air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc–air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc–air research. Detailed discussion will be organized around the individual components of the system – from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal–air batteries are briefly overviewed and compared in favor of zinc–air.

1,747 citations