scispace - formally typeset
Search or ask a question
Author

Robert J. Lefkowitz

Bio: Robert J. Lefkowitz is an academic researcher from Howard Hughes Medical Institute. The author has contributed to research in topics: Receptor & G protein-coupled receptor. The author has an hindex of 214, co-authored 860 publications receiving 147995 citations. Previous affiliations of Robert J. Lefkowitz include University of Nice Sophia Antipolis & University of Stuttgart.


Papers
More filters
Journal ArticleDOI
TL;DR: Even though arrestin and beta-arrestin are similar proteins, they display marked specificity for their respective receptors and that phosphorylation of the receptors by the receptor-specific kinases serves to permit the inhibitory effects of the "arresting" proteins by allowing them to bind to the receptors and thereby inhibit their signaling properties.

335 citations

Journal ArticleDOI
TL;DR: The strategy outlined here allows a quantification of ligand bias and the identification of weakly biased compounds and should aid in deciphering complex signaling pathways and may be useful for the development of novel biased therapeutic ligands as drugs.
Abstract: Seven transmembrane receptors (7TMRs), commonly referred to as G protein-coupled receptors, form a large part of the “druggable” genome. 7TMRs can signal through parallel pathways simultaneously, such as through heterotrimeric G proteins from different families, or, as more recently appreciated, through the multifunctional adapters, β-arrestins. Biased agonists, which signal with different efficacies to a receptor9s multiple downstream pathways, are useful tools for deconvoluting this signaling complexity. These compounds may also be of therapeutic use because they have distinct functional and therapeutic profiles from “balanced agonists.” Although some methods have been proposed to identify biased ligands, no comparison of these methods applied to the same set of data has been performed. Therefore, at this time, there are no generally accepted methods to quantify the relative bias of different ligands, making studies of biased signaling difficult. Here, we use complementary computational approaches for the quantification of ligand bias and demonstrate their application to two well known drug targets, the β2 adrenergic and angiotensin II type 1A receptors. The strategy outlined here allows a quantification of ligand bias and the identification of weakly biased compounds. This general method should aid in deciphering complex signaling pathways and may be useful for the development of novel biased therapeutic ligands as drugs.

333 citations

Journal ArticleDOI
15 Sep 2011-Nature
TL;DR: A molecular mechanism by which β-adrenergic catecholamines, acting through both Gs–PKA and β-arrestin-mediated signalling pathways, trigger DNA damage and suppress p53 levels respectively, are elucidated, thus synergistically leading to the accumulation of DNA damage.
Abstract: The human mind and body respond to stress, a state of perceived threat to homeostasis, by activating the sympathetic nervous system and secreting the catecholamines adrenaline and noradrenaline in the 'fight-or-flight' response. The stress response is generally transient because its accompanying effects (for example, immunosuppression, growth inhibition and enhanced catabolism) can be harmful in the long term. When chronic, the stress response can be associated with disease symptoms such as peptic ulcers or cardiovascular disorders, and epidemiological studies strongly indicate that chronic stress leads to DNA damage. This stress-induced DNA damage may promote ageing, tumorigenesis, neuropsychiatric conditions and miscarriages. However, the mechanisms by which these DNA-damage events occur in response to stress are unknown. The stress hormone adrenaline stimulates β(2)-adrenoreceptors that are expressed throughout the body, including in germline cells and zygotic embryos. Activated β(2)-adrenoreceptors promote Gs-protein-dependent activation of protein kinase A (PKA), followed by the recruitment of β-arrestins, which desensitize G-protein signalling and function as signal transducers in their own right. Here we elucidate a molecular mechanism by which β-adrenergic catecholamines, acting through both Gs-PKA and β-arrestin-mediated signalling pathways, trigger DNA damage and suppress p53 levels respectively, thus synergistically leading to the accumulation of DNA damage. In mice and in human cell lines, β-arrestin-1 (ARRB1), activated via β(2)-adrenoreceptors, facilitates AKT-mediated activation of MDM2 and also promotes MDM2 binding to, and degradation of, p53, by acting as a molecular scaffold. Catecholamine-induced DNA damage is abrogated in Arrb1-knockout (Arrb1(-/-)) mice, which show preserved p53 levels in both the thymus, an organ that responds prominently to acute or chronic stress, and in the testes, in which paternal stress may affect the offspring's genome. Our results highlight the emerging role of ARRB1 as an E3-ligase adaptor in the nucleus, and reveal how DNA damage may accumulate in response to chronic stress.

329 citations

Journal ArticleDOI
TL;DR: Hormones and drugs initiate their biologic actions by binding to specific cellular recognition sites, termed receptors, and are followed by alterations of cellular metabol...
Abstract: VIRTUALLY all hormones and drugs initiate their biologic actions by binding to specific cellular recognition sites, termed receptors. Receptor binding is followed by alterations of cellular metabol...

326 citations

Journal ArticleDOI
TL;DR: It is concluded that rapid agonist-induced desensitization of the beta 1AR involves phosphorylation of the receptor by both PKA and at least beta ARK1 in intact cells.

323 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
19 Feb 1998-Nature
TL;DR: To their surprise, it was found that double-stranded RNA was substantially more effective at producing interference than was either strand individually, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process.
Abstract: Experimental introduction of RNA into cells can be used in certain biological systems to interfere with the function of an endogenous gene Such effects have been proposed to result from a simple antisense mechanism that depends on hybridization between the injected RNA and endogenous messenger RNA transcripts RNA interference has been used in the nematode Caenorhabditis elegans to manipulate gene expression Here we investigate the requirements for structure and delivery of the interfering RNA To our surprise, we found that double-stranded RNA was substantially more effective at producing interference than was either strand individually After injection into adult animals, purified single strands had at most a modest effect, whereas double-stranded mixtures caused potent and specific interference The effects of this interference were evident in both the injected animals and their progeny Only a few molecules of injected double-stranded RNA were required per affected cell, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process

15,374 citations

Journal ArticleDOI
TL;DR: This approach provides two major advantages compared with other available methods: it uses an exact mathematical model of the ligand-binding system, thereby avoiding the possible biases introduced by several commonly used approximations and it uses a statistically valid, appropriately weighted least-squares curve-fitting algorithm with objective measurement of goodness of fit.

8,717 citations

Journal ArticleDOI
13 Oct 2000-Cell
TL;DR: Understanding of the complex signaling networks downstream from RTKs and how alterations in these networks are translated into cellular responses provides an important context for therapeutically countering the effects of pathogenic RTK mutations in cancer and other diseases.

7,056 citations

Journal ArticleDOI
TL;DR: This review considers recent findings regarding GC action and generates criteria for determining whether a particular GC action permits, stimulates, or suppresses an ongoing stress-response or, as an additional category, is preparative for a subsequent stressor.
Abstract: The secretion of glucocorticoids (GCs) is a classic endocrine response to stress. Despite that, it remains controversial as to what purpose GCs serve at such times. One view, stretching back to the time of Hans Selye, posits that GCs help mediate the ongoing or pending stress response, either via basal levels of GCs permitting other facets of the stress response to emerge efficaciously, and/or by stress levels of GCs actively stimulating the stress response. In contrast, a revisionist viewpoint posits that GCs suppress the stress response, preventing it from being pathologically overactivated. In this review, we consider recent findings regarding GC action and, based on them, generate criteria for determining whether a particular GC action permits, stimulates, or suppresses an ongoing stressresponse or, as an additional category, is preparative for a subsequent stressor. We apply these GC actions to the realms of cardiovascular function, fluid volume and hemorrhage, immunity and inflammation, metabolism, neurobiology, and reproductive physiology. We find that GC actions fall into markedly different categories, depending on the physiological endpoint in question, with evidence for mediating effects in some cases, and suppressive or preparative in others. We then attempt to assimilate these heterogeneous GC actions into a physiological whole. (Endocrine Reviews 21: 55‐ 89, 2000)

6,707 citations