scispace - formally typeset
Search or ask a question
Author

Robert J. Lefkowitz

Bio: Robert J. Lefkowitz is an academic researcher from Howard Hughes Medical Institute. The author has contributed to research in topics: Receptor & G protein-coupled receptor. The author has an hindex of 214, co-authored 860 publications receiving 147995 citations. Previous affiliations of Robert J. Lefkowitz include University of Nice Sophia Antipolis & University of Stuttgart.


Papers
More filters
Journal ArticleDOI
TL;DR: PKA-mediated phosphorylation can trigger agonist-induced internalization of the β1AR and the pathway selected forβ1AR internalization is primarily determined by the kinase that phosphorylates the receptor, i.e. PKA- mediated phosphorylated directs internalization via a caveolae pathway, whereas GRK-mediatedosphorylation directs it through clathrin-coated pits.

152 citations

Journal ArticleDOI
TL;DR: Results indicate that desensitization of turkey erythrocyte adenylate cyclase is highly correlated with phosphorylation of the beta-adrenergic receptor and that these events are mediated, at least partially, by cAMP.

151 citations

Journal ArticleDOI
06 Nov 1970-Science
TL;DR: This system, which appears to be applicable to all polypeptide hormones, provides a rapid and sensitive method for measurements of biologically active ACTH in dilute whole plasma.
Abstract: Biologically active iodine-125-labeled adrenocorticotropic hormone (ACTH) binds specifically to ACTH receptors extracted from adrenals. Unlabeled ACTH at 1 picogram per milliliter significantly displaces labeled ACTH from these receptors. This system, which appears to be applicable to all polypeptide hormones, provides a rapid and sensitive method for measurements of biologically active ACTH in dilute whole plasma.

150 citations

Journal ArticleDOI
TL;DR: Palmitoylation of GRK6 appears essential for membrane association, since palmitoylated kinase was found only in the membrane fraction, and lipid modification provides a structural basis for potential regulation of the subcellular distribution ofGRK6 through acylation/deacylation cycles.

149 citations

Journal ArticleDOI
TL;DR: The discovery that the deubiquitinating enzyme ubiquitin-specific protease 33 (USP33) binds β-arrestin2 and leads to the deUBiquitinase, which is a key regulatory step in 7TMR trafficking and signal transmission from the activated receptors to downstream effectors is reported.
Abstract: Beta-arrestins are multifunctional adaptors that mediate the desensitization, internalization, and some signaling functions of seven-transmembrane receptors (7TMRs). Agonist-stimulated ubiquitination of beta-arrestin2 mediated by the E3 ubiquitin ligase Mdm2 is critical for rapid beta(2)-adrenergic receptor (beta(2)AR) internalization. We now report the discovery that the deubiquitinating enzyme ubiquitin-specific protease 33 (USP33) binds beta-arrestin2 and leads to the deubiquitination of beta-arrestins. USP33 and Mdm2 function reciprocally and favor respectively the stability or lability of the receptor beta-arrestin complex, thus regulating the longevity and subcellular localization of receptor signalosomes. Receptors such as the beta(2)AR, previously shown to form loose complexes with beta-arrestin ("class A") promote a beta-arrestin conformation conducive for binding to the deubiquitinase, whereas the vasopressin V2R, which forms tight beta-arrestin complexes ("class B"), promotes a distinct beta-arrestin conformation that favors dissociation of the enzyme. Thus, USP33-beta-arrestin interaction is a key regulatory step in 7TMR trafficking and signal transmission from the activated receptors to downstream effectors.

149 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
19 Feb 1998-Nature
TL;DR: To their surprise, it was found that double-stranded RNA was substantially more effective at producing interference than was either strand individually, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process.
Abstract: Experimental introduction of RNA into cells can be used in certain biological systems to interfere with the function of an endogenous gene Such effects have been proposed to result from a simple antisense mechanism that depends on hybridization between the injected RNA and endogenous messenger RNA transcripts RNA interference has been used in the nematode Caenorhabditis elegans to manipulate gene expression Here we investigate the requirements for structure and delivery of the interfering RNA To our surprise, we found that double-stranded RNA was substantially more effective at producing interference than was either strand individually After injection into adult animals, purified single strands had at most a modest effect, whereas double-stranded mixtures caused potent and specific interference The effects of this interference were evident in both the injected animals and their progeny Only a few molecules of injected double-stranded RNA were required per affected cell, arguing against stochiometric interference with endogenous mRNA and suggesting that there could be a catalytic or amplification component in the interference process

15,374 citations

Journal ArticleDOI
TL;DR: This approach provides two major advantages compared with other available methods: it uses an exact mathematical model of the ligand-binding system, thereby avoiding the possible biases introduced by several commonly used approximations and it uses a statistically valid, appropriately weighted least-squares curve-fitting algorithm with objective measurement of goodness of fit.

8,717 citations

Journal ArticleDOI
13 Oct 2000-Cell
TL;DR: Understanding of the complex signaling networks downstream from RTKs and how alterations in these networks are translated into cellular responses provides an important context for therapeutically countering the effects of pathogenic RTK mutations in cancer and other diseases.

7,056 citations

Journal ArticleDOI
TL;DR: This review considers recent findings regarding GC action and generates criteria for determining whether a particular GC action permits, stimulates, or suppresses an ongoing stress-response or, as an additional category, is preparative for a subsequent stressor.
Abstract: The secretion of glucocorticoids (GCs) is a classic endocrine response to stress. Despite that, it remains controversial as to what purpose GCs serve at such times. One view, stretching back to the time of Hans Selye, posits that GCs help mediate the ongoing or pending stress response, either via basal levels of GCs permitting other facets of the stress response to emerge efficaciously, and/or by stress levels of GCs actively stimulating the stress response. In contrast, a revisionist viewpoint posits that GCs suppress the stress response, preventing it from being pathologically overactivated. In this review, we consider recent findings regarding GC action and, based on them, generate criteria for determining whether a particular GC action permits, stimulates, or suppresses an ongoing stressresponse or, as an additional category, is preparative for a subsequent stressor. We apply these GC actions to the realms of cardiovascular function, fluid volume and hemorrhage, immunity and inflammation, metabolism, neurobiology, and reproductive physiology. We find that GC actions fall into markedly different categories, depending on the physiological endpoint in question, with evidence for mediating effects in some cases, and suppressive or preparative in others. We then attempt to assimilate these heterogeneous GC actions into a physiological whole. (Endocrine Reviews 21: 55‐ 89, 2000)

6,707 citations