scispace - formally typeset
Search or ask a question
Author

Robert J. Stern

Bio: Robert J. Stern is an academic researcher from University of Texas at Dallas. The author has contributed to research in topics: Subduction & Zircon. The author has an hindex of 84, co-authored 380 publications receiving 25272 citations. Previous affiliations of Robert J. Stern include Carnegie Institution for Science & University of Minnesota.


Papers
More filters
Journal ArticleDOI
TL;DR: The most important, rapid, and enigmatic changes in our Earth's environment and biota occurred during the Neoproterozoic Era (1000-540 million years ago; Ma).
Abstract: Some of the most important, rapid, and enigmatic changes in our Earth’s environment and biota occurred during the Neoproterozoic Era (1000540 million years ago; Ma). Paramount among these changes are the rapid evolution of eukaryotes and appearance of metazoa (Knoll 1992, Conway Morris 1993), major episodes of continental glaciation that may have extended to low latitudes (Hambrey & Harland 1985), marked increases in the oxygen concentration of the atmosphere and hydrosphere (Derry et al 1992), the reappearance of sedimentary banded iron formations (BIF; James 1983), and striking temporal variations in the isotopic composition of C and Sr (Asmerom et al 1991, Derry et al 1992). Understanding the causes of and relationships between these changes is a challenging focus of interdisciplinary research, and there are compelling indications that the most important causes were tectonic (Des Marais et al 1992, Veevers 1990). For example, development of ocean basins may have been accompanied by the development of seafloor hydrothermal systems, which lowered the 87Sr/S6Sr of seawater, led to the development of BIF, and formed anoxic basins where organic carbon could be buried, thus leading to an increase in O~. Continental collision and formation of a supercontinent may have led to continental glaciation and an increase in the 87Sr/86Sr of seawater,

1,580 citations

Journal ArticleDOI
TL;DR: A new model for the earliest stages in the evolution of subduction zones is developed from recent geologic studies of the Izu-Bonin-Mariana (IBM) arc system and then applied to Late Jurassic ophiolites of Cailfornia.
Abstract: A new model for the earliest stages in the evolution of subduction zones is developed from recent geologic studies of the Izu-Bonin-Mariana (IBM) arc system and then applied to Late Jurassic ophiolites of Cailfornia. The model accounts for several key observations about the earliest stages in the evolution of the IBM system: (1) subduction nucleated along an active transform boundary, which separated younger, less-dense lithosphere in the west from older, more-dense lithosphere to the east; (2) initial arc magmatic activity occupied a much broader zone than existed later; (3) initial magmatism extended up to the modern trench, over a region now characterized by subnormal heat flow; (4) early are magmatism was characterized by depleted (tholeiitic) and ultra-depleted (boninitic) magmas, indicating that melting was more extensive and involved more depleted mantle than is found anywhere else on earth; (5) early arc magmatism was strongly extensional, with crust forming in a manner similar to slow-spreading ridges; and (6) crust production rates were 120 to 180 km 3 /km-Ma, several times greater than for mature arc systems. These observations require that the earliest stages of subduction involve rapid retreat of the trench; we infer that this resulted from continuous subsidence of denser lithosphere along the transform fault. This resulted in strong extension and thinning of younger, more buoyant lithosphere to the west. This extension was accompanied by the flow of water from the sinking oceanic lithosphere to the base of the extending lithosphere and the underlying asthenosphere. Addition of water and asthenospheric upwelling led to catastrophic melting, which continued until lithosphere subsidence was replaced by lithospheric subduction . Application of the subduction-zone infancy model to the Late Jurassic ophiolites of California provides a framework in which to understand the rapid formation of oceanic crust with strong arc affinities between the younger Sierran magmatic arc and the Franciscan subduction complex, provides a mechanism for the formation and subsidence of the Great Valley forearc basin, and explains the limited duration of high-T, high-P metamorphism experienced by Franciscan melanges.

756 citations

Journal ArticleDOI
TL;DR: A recent dive with the JAMSTEC Shinkai 6500 manned submersible in the Mariana fore arc southeast of Guam has discovered that MORB-like tholeiitic basalts crop out over large areas.
Abstract: Recent diving with the JAMSTEC Shinkai 6500 manned submersible in the Mariana fore arc southeast of Guam has discovered that MORB-like tholeiitic basalts crop out over large areas These ''fore-arc basalts'' (FAB) underlie boninites and overlie diabasic and gabbroic rocks Potential origins include eruption at a spreading center before subduction began or eruption during near-trench spreading after subduction began FAB trace element patterns are similar to those of MORB and most Izu-Bonin-Mariana (IBM) back-arc lavas However, Ti/V and Yb/V ratios are lower in FAB reflecting a stronger prior depletion of their mantle source compared to the source of basalts from mid-ocean ridges and back-arc basins Some FAB also have higher concentrations of fluid-soluble elements than do spreading center lavas Thus, the most likely origin of FAB is that they were the first lavas to erupt when the Pacific Plate began sinking beneath the Philippine Plate at about 51 Ma The magmas were generated by mantle decompression during near-trench spreading with little or no mass transfer from the subducting plate Boninites were generated later when the residual, highly depleted mantle melted at shallow levels after fluxing by a water-rich fluid derived from the sinking Pacific Plate This magmatic stratigraphy of FAB overlain by transitional lavas and boninites is similar to that found in many ophiolites, suggesting that ophiolitic assemblages might commonly originate from near-trench volcanism caused by subduction initiation Indeed, the widely dispersed Jurassic and Cretaceous Tethyan ophiolites could represent two such significant subduction initiation events

616 citations

Journal ArticleDOI
TL;DR: In this article, a new ICP-MS database for glasses from the Mariana Trough was used to provide the basis for a geochemical mapping of the arc-basin system.
Abstract: A new ICP-MS database for glasses from the Mariana Trough, together with published and new ICP-MS data from the Mariana arc, provides the basis for geochemical mapping of the Mariana arc-basin system. The geochemical maps presented here are based on the graphic representation of spatial variations in geochemical proxies for the principal mantle and subduction components. The focus is on three elements with high and similar partition coefficients but different behavior in subduction systems, namely, Ba, Th, and Nb. Two elements with different partition coefficients, Ta and Yb, are used as normalizing factors. Ratio maps (Ta/Yb, Nb/Ta, Th/Ta, Ba/Ta, Ba/Th) provide the simplest petrogenetic insights, subduction zone addition maps based on deviations from a MORB array provide more quantitative insights, and component maps represent an attempt to isolate the different subduction components. The maps shown here indicate the presence of a variably depleted asthenosphere and three added components: a Nb-Th-Ba component, a Th-Ba deep-subduction component, and a Ba-only shallow-subduction component. The asthenosphere entering the system is enriched relative to N-MORB and appears to be focused at three sites within the Mariana Trough. The Nb-Th-Ba component is present mainly in the north of the arc (the Northern Seamount province and northern Central Island Province), the northern edge of the Mariana Trough, and two locations within the Southern Seamount Province. It has a distinctively high Nb/Ta ratio and a moderate enrichment in Th and Ba relative to Nb. Its composition and distribution indicate that it may not be part of the present subduction system but instead originates in mantle lithosphere previously enriched above the subduction zone by addition of small-degree, subduction-modified mantle melts. The Th-Ba component is present throughout the arc and, in minor amounts, in parts of the back-arc basin. The Ba-only component is mainly present in the central part of the arc and at the edges of the back-arc basin. Overall, the geochemical maps provide a new perspective on the geochemical processes that accompany the evolution of an arc basin system from prerifting lithospheric enrichment, through arc-rifting to arc volcanism and back-arc spreading

612 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This article evaluated subducting sediments on a global basis in order to better define their chemical systematics and to determine both regional and global average compositions, and then used these compositions to assess the importance of sediments to arc volcanism and crust-mantle recycling, and to re-evaluate the chemical composition of the continental crust.

2,973 citations

Journal ArticleDOI
TL;DR: In this article, a three-layer crust consisting of upper, middle, and lower crust is divided into type sections associated with different tectonic provinces, in which P wave velocities increase progressively with depth and there is a large variation in average P wave velocity of the lower crust between different type sections.
Abstract: Geophysical, petrological, and geochemical data provide important clues about the composition of the deep continental crust. On the basis of seismic refraction data, we divide the crust into type sections associated with different tectonic provinces. Each shows a three-layer crust consisting of upper, middle, and lower crust, in which P wave velocities increase progressively with depth. There is large variation in average P wave velocity of the lower crust between different type sections, but in general, lower crustal velocities are high (>6.9 km s−1) and average middle crustal velocities range between 6.3 and 6.7 km s−1. Heat-producing elements decrease with depth in the crust owing to their depletion in felsic rocks caused by granulite facies metamorphism and an increase in the proportion of mafic rocks with depth. Studies of crustal cross sections show that in Archean regions, 50–85% of the heat flowing from the surface of the Earth is generated within the crust. Granulite terrains that experienced isobaric cooling are representative of middle or lower crust and have higher proportions of mafic rocks than do granulite terrains that experienced isothermal decompression. The latter are probably not representative of the deep crust but are merely upper crustal rocks that have been through an orogenic cycle. Granulite xenoliths provide some of the deepest samples of the continental crust and are composed largely of mafic rock types. Ultrasonic velocity measurements for a wide variety of deep crustal rocks provide a link between crustal velocity and lithology. Meta-igneous felsic, intermediate and mafic granulite, and amphibolite facies rocks are distinguishable on the basis of P and S wave velocities, but metamorphosed shales (metapelites) have velocities that overlap the complete velocity range displayed by the meta-igneous lithologies. The high heat production of metapelites, coupled with their generally limited volumetric extent in granulite terrains and xenoliths, suggests they constitute only a small proportion of the lower crust. Using average P wave velocities derived from the crustal type sections, the estimated areal extent of each type of crust, and the average compositions of different types of granulites, we estimate the average lower and middle crust composition. The lower crust is composed of rocks in the granulite facies and is lithologically heterogeneous. Its average composition is mafic, approaching that of a primitive mantle-derived basalt, but it may range to intermediate bulk compositions in some regions. The middle crust is composed of rocks in the amphibolite facies and is intermediate in bulk composition, containing significant K, Th, and U contents. Average continental crust is intermediate in composition and contains a significant proportion of the bulk silicate Earth's incompatible trace element budget (35–55% of Rb, Ba, K, Pb, Th, and U).

2,909 citations

Journal ArticleDOI
01 Jan 2008-Lithos
TL;DR: Two geochemical proxies are particularly important for the identification and classification of oceanic basalts: the Th-Nb proxy for crustal input and hence for demonstrating an oceanic, non-subduction setting; and the Ti-Yb proxy, for melting depth and hence indicating mantle temperature and thickness of the conductive lithosphere as mentioned in this paper.

2,487 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize knowledge of the behavior of elements in the subduction system and highlight the physical and chemical processes that have been invoked as being important in controlling the composition of volcanic arc magmas.
Abstract: Volcanic arc magmas can be defined tectonically as magmas erupting from volcanic edifices above subducting oceanic lithosphere. They form a coherent magma type, characterized compositionally by their enrichment in large ion lithophile (LlL) elements relative to high field strength (HFS) elements. In terms of process, the predominant view is that the vast majority of volcanic arc magmas originate by melting of the underlying mantle wedge, which contains a component of aqueous fluid and/or melt derived from the subducting plate. Recently, opinions have converged over the key aspects of the physical model for magma generation above subduction zones (Davies & Stevenson 1992), namely: 1. that the mantle wedge experiences subduction-induced corner flow (e.g. Spiegelman & MacKenzie 1987); 2. that the subduction component reaches the fusible part of the mantle wedge by the three-stage process of (i) metasomatism of mantle lithosphere, followed by (ii) aqueous fluid release due to breakdown of hydrous minerals at depth (e.g. Wyllie 1983, Tatsumi et al 1983) and (iii) aqueous fluid migration, followed by hydrous melt migration, to the site of melting; 3. that slab-induced flow may be locally reversed beneath the arc itself, allowing mantle decompression to contribute to melt generation (e.g. Ida 1983). The simplified model in Figure 1 highlights the physical and chemical processes that have been invoked as being important in controlling the composition of volcanic arc magmas. Magma compositions (coupled with experimental data on element behavior) can help us gain further understanding of these physical and chemical processes. In this review, we first summarize knowledge of the behavior of elements in the subduction system. We then focus on compositional evidence for the processes illustrated in Figure 1, which we group as follows: 1. derivation of the subduction component, 2. transport of the subduction component to the melting column, 3. depletion and enrichment of the mantle wedge, and 4. processes in the melting column.

2,374 citations