scispace - formally typeset
Search or ask a question
Author

Robert J. Toso

Bio: Robert J. Toso is an academic researcher from University of California, Santa Barbara. The author has contributed to research in topics: Streptavidin & Vinblastine. The author has an hindex of 3, co-authored 4 publications receiving 1250 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate that taxol shares a common antiproliferative mechanism with vinblastine, and at its lowest effective concentrations, taxol appears to block mitosis by kinetically stabilizing spindle microtubules and not by changing the mass of polymerizedmicrotubules.
Abstract: Taxol inhibited HeLa cell proliferation by inducing a sustained mitotic block at the metaphase/anaphase boundary. Half-maximal inhibition of cell proliferation occurred at 8 nM taxol, and mitosis was half-maximally blocked at 8 nM taxol. Inhibition of mitosis was associated with formation of an incomplete metaphase plate of chromosomes and an altered arrangement of spindle microtubules that strongly resembled the abnormal organization that occurs with low concentrations of vinblastine and other antimitotic compounds. No increase in microtubule polymer mass occurred below 10 nM taxol. The mass of microtubules increased half-maximally at 80 nM taxol and attained maximal levels (5 times normal) at 330 nM taxol. At submicromolar concentrations, taxol suppressed growing and shortening at the ends of microtubules reassembled in vitro from bovine brain tubulin in a manner that resembled suppression by vinblastine. Taxol was concentrated in HeLa cells several hundredfold to levels that were similar to those which suppressed dynamic instability in vitro. The results indicate that taxol shares a common antiproliferative mechanism with vinblastine. At its lowest effective concentrations, taxol appears to block mitosis by kinetically stabilizing spindle microtubules and not by changing the mass of polymerized microtubules.

1,066 citations

Journal ArticleDOI
TL;DR: The results suggest that vinblastine kinetically stabilizes microtubule ends by modulating the gain and loss of the stabilizing GTP or GDP-Pi "cap", which is believed to be responsible for the transitions between the growing and shortening phases.
Abstract: The antiproliferative action of vinblastine at low concentrations appears to result from modulation of the polymerization dynamics of spindle microtubules rather than from depolarization of the microtubules [Jordan, M. A., Thrower, D., & Wilson, L. (1991) Cancer Res. 51, 2212-2222; (1992) J. Cell. Sci. 102, 401-416]. In the present study, we used differential interference contrast video microscopy to analyze the effects of vinblastine on the growing and shortening dynamics (dynamic instability) of individual bovine brain microtubules in vitro. With microtubules which were either depleted of microtubule-associated proteins (MAPs) or rich in MAPs, low concentrations of vinblastine (0.2 microM-1 microM) suppressed the growing and shortening rates and increased the percentage of time that the microtubules spent a state of attenuated activity, neither growing nor shortening detectably. Vinblastine also suppressed the duration of microtubule growing and shortening, and increased the duration of the attenuated state, during which the microtubules neither grew nor shortened detectably. Consistent with previous data obtained using radiolabeled nucleotide exchange in microtubule suspensions [Jordan, M. A., & Wilson, L. (1990) Biochemistry 29, 2730-2739], vinblastine suppressed growing and shortening dynamics at the kinetically more rapid plus ends. The results suggest that vinblastine kinetically stabilizes microtubule ends by modulating the gain and loss of the stabilizing GTP or GDP-Pi "cap", which is believed to be responsible for the transitions between the growing and shortening phases. The data support the hypothesis that (1) low concentrations of vinblastine inhibit mitosis by kinetically stabilizing the polymerization dynamics of spindle microtubules and that (2) the dynamics of spindle microtubules are critical for the proper progression of mitosis.

228 citations

Journal ArticleDOI
TL;DR: Flask studies indicated that fermentation media containing either complex or multiple carbon sources resulted in higher yields of streptavidin than media with a single carbon source.
Abstract: The production of streptavidin byStreptomyces avidinii in several different media was examined at 24, 48 and 72 hours. Flask studies indicated that fermentation media containing either complex or multiple carbon sources resulted in higher yields of streptavidin than media with a single carbon source. Streptavidin could be detected in crude fermentation broths by use of a tritiated biotin binding assay. This assay appears to give useful estimates of streptavidin production. Depending upon the medium employed, streptavidin yields ranged from 0.5 mg/l to 53 mg/l. Production was successfully scaled up to ten liter fermentors. Streptavidin was purified in a one step process from centrifuged, concentrated fermentation broths by binding the protein to an iminobiotin column at pH 11 followed by elution at pH 4.0. Recovery percentages varied depending upon the solubility of the fermentation media ingredients.

5 citations

01 Jan 1990
TL;DR: Flask studies indicated that fermentation media containing either complex or multiple carbon sources resulted in higher yields of streptavidin than media with a single carbon source.
Abstract: The production of streptavidin by Streptomyces avidinii in several different media was examined at 24, 48 and 72 hours. Flask studies indicated that fermentation media containing either complex or multiple carbon sources resulted in higher yields of streptavidin than media with a single carbon source. Streptavidin could be detected in crude fermentation broths by use of a tritiated biotin binding assay. This assay appears to give useful estimates of streptavidin production. Depending upon the medium employed, streptavidin yields ranged from 0.5 rag/1 to 53 mg/1. Production was successfully scaled up to ten liter fermentors. Streptavidin was purified in a one step process from centrifuged, concentrated fermentation broths by binding the protein to an iminobiotin column at pH 11 followed by elution at pH 4.0. Recovery percentages varied depending upon the solubility of the fermentation media ingredients.

Cited by
More filters
Journal ArticleDOI
TL;DR: Highly dynamic mitotic-spindle microtubules are among the most successful targets for anticancer therapy, and it is now known that at lower concentrations, microtubule-targeted drugs can suppress micro Tubule dynamics without changingmicrotubule mass; this action leads to mitotic block and apoptosis.
Abstract: Highly dynamic mitotic-spindle microtubules are among the most successful targets for anticancer therapy. Microtubule-targeted drugs, including paclitaxel and Vinca alkaloids, were previously considered to work primarily by increasing or decreasing the cellular microtubule mass. Although these effects might have a role in their chemotherapeutic actions, we now know that at lower concentrations, microtubule-targeted drugs can suppress microtubule dynamics without changing microtubule mass; this action leads to mitotic block and apoptosis. In addition to the expanding array of chemically diverse antimitotic agents, some microtubule-targeted drugs can act as vascular-targeting agents, rapidly depolymerizing microtubules of newly formed vasculature to shut down the blood supply to tumours.

4,007 citations

Journal ArticleDOI
TL;DR: This review describes progress toward understanding the mechanism of dynamic instability of pure tubulin and discusses the function and regulation of microtubule dynamic instability in living cells.
Abstract: The polymerization dynamics of microtubules are central to their biological functions. Polymerization dynamics allow microtubules to adopt spatial arrangements that can change rapidly in response to cellular needs and, in some cases, to perform mechanical work. Microtubules utilize the energy of GTP hydrolysis to fuel a unique polymerization mechanism termed dynamic instability. In this review, we first describe progress toward understanding the mechanism of dynamic instability of pure tubulin and then discuss the function and regulation of microtubule dynamic instability in living cells.

2,484 citations

Journal ArticleDOI
TL;DR: The screening of a range of botanical species and marine organisms has yielded promising new antitubulin agents with novel properties, and the three main objectives are enhanced tumour specificity, reduced neurotoxicity and insensitivity to chemoresistance mechanisms.
Abstract: Microtubules are dynamic filamentous cytoskeletal proteins composed of tubulin and are an important therapeutic target in tumour cells. Agents that bind to microtubules have been part of the pharmacopoeia of anticancer therapy for decades and until the advent of targeted therapy, microtubules were the only alternative to DNA as a therapeutic target in cancer. The screening of a range of botanical species and marine organisms has yielded promising new antitubulin agents with novel properties. In the current search for novel microtubule-binding agents, enhanced tumour specificity, reduced neurotoxicity and insensitivity to chemoresistance mechanisms are the three main objectives.

1,450 citations

Journal ArticleDOI
TL;DR: The signalling pathways involved in regulating tumour cell response to chemotherapy more completely than ever before are characterized, which will facilitate the future development of rational combined chemotherapy regimens, in which the newer targeted therapies are used in combination with cytotoxic drugs to enhance chemotherapy activity.
Abstract: Resistance to chemotherapy limits the effectiveness of anti-cancer drug treatment. Tumours may be intrinsically drug-resistant or develop resistance to chemotherapy during treatment. Acquired resistance is a particular problem, as tumours not only become resistant to the drugs originally used to treat them, but may also become cross-resistant to other drugs with different mechanisms of action. Resistance to chemotherapy is believed to cause treatment failure in over 90% of patients with metastatic cancer, and resistant micrometastic tumour cells may also reduce the effectiveness of chemotherapy in the adjuvant setting. Clearly, if drug resistance could be overcome, the impact on survival would be highly significant. This review focuses on molecular mechanisms of drug resistance that operate to reduce drug sensitivity in cancer cells. Drug resistance can occur at many levels, including increased drug efflux, drug inactivation, alterations in drug target, processing of drug-induced damage, and evasion of apoptosis. Advances in DNA microarray and proteomic technology, and the ongoing development of new targeted therapies have opened up new opportunities to combat drug resistance. We are now able to characterize the signalling pathways involved in regulating tumour cell response to chemotherapy more completely than ever before. This will facilitate the future development of rational combined chemotherapy regimens, in which the newer targeted therapies are used in combination with cytotoxic drugs to enhance chemotherapy activity. The ability to predict response to chemotherapy and to modulate this response with targeted therapies will permit selection of the best treatment for individual patients.

1,416 citations

Patent
19 Jul 1994
TL;DR: In this article, an anti-angiogenic factor and a polymeric carrier were used for embolization of blood vessels and eliminating biliary, urethral, esophageal, and tracheal/bronchial obstructions.
Abstract: The present invention provides compositions comprising an anti-angiogenic factor, and a polymeric carrier. Representative examples of anti-angiogenic factors include Anti-Invasive Factor, Retinoic acids and derivatives thereof, and paclitaxel. Also provided are methods for embolizing blood vessels, and eliminating biliary, urethral, esophageal, and tracheal/bronchial obstructions.

1,285 citations