scispace - formally typeset
Search or ask a question
Author

Robert J. Weyant

Bio: Robert J. Weyant is an academic researcher from University of Pittsburgh. The author has contributed to research in topics: Population & Genome-wide association study. The author has an hindex of 58, co-authored 201 publications receiving 18852 citations. Previous affiliations of Robert J. Weyant include Wayne State University & Allegheny General Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: Genetic loci associated with body mass index map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor, which may provide new insights into human body weight regulation.
Abstract: Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and similar to 2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 x 10(-8)), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.

2,632 citations

01 Jan 2010
TL;DR: 18 new loci associated with body mass index are identified, one of which includes a copy number variant near GPRC5B, and genes in other newly associated loci may provide new insights into human body weight regulation.
Abstract: Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and approximately 2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 x 10(-)(8)), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.

1,953 citations

Journal ArticleDOI
Hana Lango Allen1, Karol Estrada2, Guillaume Lettre3, Sonja I. Berndt4  +341 moreInstitutions (90)
14 Oct 2010-Nature
TL;DR: It is shown that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait, and indicates that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
Abstract: Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

1,768 citations

01 Jan 2010
TL;DR: In this paper, the authors show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait, revealing patterns with important implications for genetic studies of common human diseases and traits.
Abstract: Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

1,751 citations

Journal ArticleDOI
TL;DR: The extent and consequences of oral diseases, their social and commercial determinants, and their ongoing neglect in global health policy are described to highlight the urgent need to address oral diseases among other NCDs as a global health priority.

1,349 citations


Cited by
More filters
Journal ArticleDOI
Stephan Ripke1, Stephan Ripke2, Benjamin M. Neale2, Benjamin M. Neale1  +351 moreInstitutions (102)
24 Jul 2014-Nature
TL;DR: Associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses.
Abstract: Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for the findings. Many findings have the potential to provide entirely new insights into aetiology, but associations at DRD2 and several genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that have important roles in immunity, providing support for the speculated link between the immune system and schizophrenia.

6,809 citations

Journal ArticleDOI
TL;DR: The GCTA software is a versatile tool to estimate and partition complex trait variation with large GWAS data sets and focuses on the function of estimating the variance explained by all the SNPs on the X chromosome and testing the hypotheses of dosage compensation.
Abstract: For most human complex diseases and traits, SNPs identified by genome-wide association studies (GWAS) explain only a small fraction of the heritability. Here we report a user-friendly software tool called genome-wide complex trait analysis (GCTA), which was developed based on a method we recently developed to address the “missing heritability” problem. GCTA estimates the variance explained by all the SNPs on a chromosome or on the whole genome for a complex trait rather than testing the association of any particular SNP to the trait. We introduce GCTA's five main functions: data management, estimation of the genetic relationships from SNPs, mixed linear model analysis of variance explained by the SNPs, estimation of the linkage disequilibrium structure, and GWAS simulation. We focus on the function of estimating the variance explained by all the SNPs on the X chromosome and testing the hypotheses of dosage compensation. The GCTA software is a versatile tool to estimate and partition complex trait variation with large GWAS data sets.

5,867 citations

Journal ArticleDOI
TL;DR: March 5, 2019 e1 WRITING GROUP MEMBERS Emelia J. Virani, MD, PhD, FAHA, Chair Elect On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee.
Abstract: March 5, 2019 e1 WRITING GROUP MEMBERS Emelia J. Benjamin, MD, ScM, FAHA, Chair Paul Muntner, PhD, MHS, FAHA, Vice Chair Alvaro Alonso, MD, PhD, FAHA Marcio S. Bittencourt, MD, PhD, MPH Clifton W. Callaway, MD, FAHA April P. Carson, PhD, MSPH, FAHA Alanna M. Chamberlain, PhD Alexander R. Chang, MD, MS Susan Cheng, MD, MMSc, MPH, FAHA Sandeep R. Das, MD, MPH, MBA, FAHA Francesca N. Delling, MD, MPH Luc Djousse, MD, ScD, MPH Mitchell S.V. Elkind, MD, MS, FAHA Jane F. Ferguson, PhD, FAHA Myriam Fornage, PhD, FAHA Lori Chaffin Jordan, MD, PhD, FAHA Sadiya S. Khan, MD, MSc Brett M. Kissela, MD, MS Kristen L. Knutson, PhD Tak W. Kwan, MD, FAHA Daniel T. Lackland, DrPH, FAHA Tené T. Lewis, PhD Judith H. Lichtman, PhD, MPH, FAHA Chris T. Longenecker, MD Matthew Shane Loop, PhD Pamela L. Lutsey, PhD, MPH, FAHA Seth S. Martin, MD, MHS, FAHA Kunihiro Matsushita, MD, PhD, FAHA Andrew E. Moran, MD, MPH, FAHA Michael E. Mussolino, PhD, FAHA Martin O’Flaherty, MD, MSc, PhD Ambarish Pandey, MD, MSCS Amanda M. Perak, MD, MS Wayne D. Rosamond, PhD, MS, FAHA Gregory A. Roth, MD, MPH, FAHA Uchechukwu K.A. Sampson, MD, MBA, MPH, FAHA Gary M. Satou, MD, FAHA Emily B. Schroeder, MD, PhD, FAHA Svati H. Shah, MD, MHS, FAHA Nicole L. Spartano, PhD Andrew Stokes, PhD David L. Tirschwell, MD, MS, MSc, FAHA Connie W. Tsao, MD, MPH, Vice Chair Elect Mintu P. Turakhia, MD, MAS, FAHA Lisa B. VanWagner, MD, MSc, FAST John T. Wilkins, MD, MS, FAHA Sally S. Wong, PhD, RD, CDN, FAHA Salim S. Virani, MD, PhD, FAHA, Chair Elect On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee

5,739 citations

Journal ArticleDOI
TL;DR: This year's edition of the Statistical Update includes data on the monitoring and benefits of cardiovascular health in the population, metrics to assess and monitor healthy diets, an enhanced focus on social determinants of health, a focus on the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors, implementation strategies, and implications of the American Heart Association’s 2020 Impact Goals.
Abstract: Background: The American Heart Association, in conjunction with the National Institutes of Health, annually reports on the most up-to-date statistics related to heart disease, stroke, and cardiovas...

5,078 citations

Journal ArticleDOI
01 Jan 2003-Diabetes
TL;DR: Since the major defect leading to a decrease in β-cell mass in type 2 diabetes is increased apoptosis, while new islet formation andβ-cell replication are normal, therapeutic approaches designed to arrest apoptosis could be a significant new development in the management of type 2 Diabetes.
Abstract: Type 2 diabetes is characterized by impaired insulin secretion. Some but not all studies suggest that a decrease in beta-cell mass contributes to this. We examined pancreatic tissue from 124 autopsies: 91 obese cases (BMI >27 kg/m(2); 41 with type 2 diabetes, 15 with impaired fasting glucose [IFG], and 35 nondiabetic subjects) and 33 lean cases (BMI <25 kg/m(2); 16 type 2 diabetic and 17 nondiabetic subjects). We measured relative beta-cell volume, frequency of beta-cell apoptosis and replication, and new islet formation from exocrine ducts (neogenesis). Relative beta-cell volume was increased in obese versus lean nondiabetic cases (P = 0.05) through the mechanism of increased neogenesis (P < 0.05). Obese humans with IFG and type 2 diabetes had a 40% (P < 0.05) and 63% (P < 0.01) deficit and lean cases of type 2 diabetes had a 41% deficit (P < 0.05) in relative beta-cell volume compared with nondiabetic obese and lean cases, respectively. The frequency of beta-cell replication was very low in all cases and no different among groups. Neogenesis, while increased with obesity, was comparable in obese type 2 diabetic, IFG, or nondiabetic subjects and in lean type 2 diabetic or nondiabetic subjects. However, the frequency of beta-cell apoptosis was increased 10-fold in lean and 3-fold in obese cases of type 2 diabetes compared with their respective nondiabetic control group (P < 0.05). We conclude that beta-cell mass is decreased in type 2 diabetes and that the mechanism underlying this is increased beta-cell apoptosis. Since the major defect leading to a decrease in beta-cell mass in type 2 diabetes is increased apoptosis, while new islet formation and beta-cell replication are normal, therapeutic approaches designed to arrest apoptosis could be a significant new development in the management of type 2 diabetes, because this approach might actually reverse the disease to a degree rather than just palliate glycemia.

3,710 citations