scispace - formally typeset
Search or ask a question
Author

Robert J. Yokelson

Bio: Robert J. Yokelson is an academic researcher from University of Montana. The author has contributed to research in topics: Aerosol & Smoke. The author has an hindex of 66, co-authored 149 publications receiving 14827 citations. Previous affiliations of Robert J. Yokelson include University of the Witwatersrand & National Oceanic and Atmospheric Administration.
Topics: Aerosol, Smoke, Combustion, Trace gas, Particulates


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the first early dry season (early June-early August) emission factor measurements for carbon dioxide (CO2), carbon monoxide (CO), methane (Ca), nonmethane hydrocarbons (NMHC), and particulates with a diameter less than 2.5 microns (pM2.5) for southern African grassland and woodland fires were presented.
Abstract: In this paper we present the first early dry season (early June-early August) emission factor measurements for carbon dioxide (CO2), carbon monoxide (CO), methane (Ca), nonmethane hydrocarbons (NMHC), and particulates with a diameter less than 2.5 microns (pM2.5) for southern African grassland and woodland fires. Seasonal emission factors for grassland fires correlate linearly with the proportion of green grass, used as a surrogate for the fuel moisture content, and are higher for products of incomplete combustion in the early part of the dry season compared with later in the dry season. Models of emission factors for NMHC and PM(sub 2.5) versus modified combustion efficiency (MCE) are statistically different in grassland compared with woodland ecosystems. We compare predictions based on the integration of emissions factors from this study, from the southern African Fire-Atmosphere Research Initiative 1992 (SAFARI-92), and from SAFARI-2000 with those based on the smaller set of ecosystem-specific emission factors to estimate the effects of using regional-average rather than ecosystem-specific emission factors. We also test the validity of using the SAFARI-92 models for emission factors versus MCE to predict the early dry season emission factors measured in this study. The comparison indicates that the largest discrepancies occur at the low end (0.907) and high end (0.972) of MCE values measured in this study. Finally, we combine our models of MCE versus proportion of green grass for grassland fires with emission factors versus MCE for selected oxygenated volatile organic compounds measured in the SAFARI-2000 campaign to derive the first seasonal emission factors for these compounds. The results of this study demonstrate that seasonal variations in savanna fire emissions are important and should be considered in modeling emissions at regional to continental scales.

56 citations

Journal ArticleDOI
TL;DR: In the first phase of the Biomass Burn Operational Project (BBOP) field campaign, conducted in the Pacific Northwest, the DOE G-1 aircraft was used to follow the time evolution of wildfire smoke from near the point of emission to locations 2.5 hours downwind as mentioned in this paper.
Abstract: . During the first phase of the Biomass Burn Operational Project (BBOP) field campaign, conducted in the Pacific Northwest, the DOE G-1 aircraft was used to follow the time evolution of wildfire smoke from near the point of emission to locations 2–3.5 hours downwind. In nine flights we made repeated transects of wildfire plumes at varying downwind distances and could thereby follow the plume's time evolution. On average there was little change in dilution-normalized aerosol mass concentration as a function of downwind distance. This consistency hides a dynamic system in which primary aerosol particles are evaporating and secondary ones condensing. Organic aerosol is oxidized as a result. On all transect more than 90 % of aerosol is organic. In freshly emitted smoke aerosol, NH4+ is approximately equivalent to NO3−. After two hours of daytime aging, NH4+ increased and is approximately equivalent to the sum of Cl−, SO42− and NO3−. Particle size increased with downwind distance causing particles to be more efficient scatters. Averaged over nine flights, mass scattering efficiency increased in ~ two hours by 56 % and in one fight doubled. Coagulation and material transport from small to large particles are discussed as mechanisms for increasing particle size. As absorption remained nearly constant with age the time evolution of single scatter albedo was controlled by age-dependent scattering. Near-fire aerosol had a single scatter albedo (SSA) of 0.8–0.9. After one to two hours of aging SSAs were typically 0.9 and greater. Assuming global-average surface and atmospheric conditions, the observed age-dependence in SSA would change the direct radiative effect of a wildfire plume from near zero near the fire to a cooling effect downwind.

52 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the vertical profiles in the lower troposphere of temperature, relative humidity, sulfur dioxide (SO2), ozone (O3), condensation nuclei (CN), and carbon monoxide (CO), and horizontal distributions of twenty gaseous and particulate species, for five regions of southern Africa during the dry biomass burning season of 2000.
Abstract: Vertical profiles in the lower troposphere of temperature, relative humidity, sulfur dioxide (SO2), ozone (O3), condensation nuclei (CN), and carbon monoxide (CO), and horizontal distributions of twenty gaseous and particulate species, are presented for five regions of southern Africa during the dry biomass burning season of 2000. The regions are the semiarid savannas of northeast South Africa and northern Botswana, the savanna-forest mosaic of coastal Mozambique, the humid savanna of southern Zambia, and the desert of western Namibia. The highest average concentrations of carbon dioxide (CO2), CO, methane (CH4), O3, black particulate carbon, and total particulate carbon were in the Botswana and Zambia sectors (388 and 392 ppmv, 369 and 453 ppbv, 1753 and 1758 ppbv, 79 and 88 ppbv, 2.6 and 5.5 micrograms /cubic meter and 13.2 and 14.3 micrograms/cubic meter). This was due to intense biomass burning in Zambia and surrounding regions. The South Africa sector had the highest average concentrations of SO2, sulfate particles, and CN (5.1 ppbv, 8.3 micrograms/cubic meter, and per 6400 cubic meter , respectively), which derived from biomass burning and electric generation plants and mining operations within this sector. Air quality in the Mozambique sector was similar to the neighboring South Africa sector. Over the arid Namibia sector there were polluted layers aloft, in which average SO2, O3, and CO mixing ratios (1.2 ppbv, 76 ppbv, and 3 10 ppbv, respectively) were similar to those measured over the other more polluted sectors. This was due to transport of biomass smoke from regions of widespread savanna burning in southern Angola. Average concentrations over all sectors of CO2 (386 +/- 8 ppmv), CO (261 +/- 81 ppbv), SO2 (2.5 +/- 1.6 ppbv), O3 (64 +/- 13 ppbv), black particulate carbon (2.3 +/- 1.9 microgram/cubic meter), organic particulate carbon (6.2 +/- 5.2 microgram/cubic meter), total particle mass (26.0 +/- 4.7 microgram/cubic meter), and potassium particles (0.4 +- 0.1 microgram/cubic meter) were comparable to those in polluted, urban air. Since the majority of the measurements in this study were obtained in locations well removed from industrial sources of pollution, the high average concentrations of pollutants reflect the effects of widespread biomass burning. On occasions, relatively thin (-0.5 km) layers of remarkably clean air were located at -3 km above mean sea level, sandwiched between heavily polluted air. The data presented here can be used for inputs to and validation of regional and global atmospheric chemical models.

51 citations

Journal ArticleDOI
TL;DR: The results suggest that the biomass may have accumulated metal-containing species that were re-emitted during biomass burning, as well as their environmental effects.
Abstract: Natural and prescribed biomass fires are a major source of aerosols that may persist in the atmosphere for several weeks. Biomass burning aerosols (BBA) can be associated with long-range transport of water-soluble N-, S-, P-, and metal-containing species. In this study, BBA samples were collected using a particle-into-liquid sampler (PILS) from laboratory burns of vegetation collected on military bases in the southeastern and southwestern United States. The samples were then analyzed using high resolution electrospray ionization mass spectrometry (ESI/HR-MS) that enabled accurate mass measurements for hundreds of species with m/z values between 70 and 1000 and assignment of elemental formulas. Mg, Al, Ca, Cr, Mn, Fe, Ni, Cu, Zn, and Ba-containing organometallic species were identified. The results suggest that the biomass may have accumulated metal-containing species that were re-emitted during biomass burning. Further research into the sources, dispersion, and persistence of metal-containing aerosols, as...

50 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

4,591 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of emission factors for a large variety of species emitted from biomass fires, where data were not available, they have proposed estimates based on appropriate extrapolation techniques.
Abstract: A large body of information on emissions from the various types of biomass burning has been accumulated over the past decade, to a large extent as a result of International Geosphere-Biosphere Programme/International Global Atmospheric Chemistry research activities. Yet this information has not been readily accessible to the atmospheric chemistry community because it was scattered over a large number of publications and reported in numerous different units and reference systems. We have critically evaluated the presently available data and integrated these into a consistent format. On the basis of this analysis we present a set of emission factors for a large variety of species emitted from biomass fires. Where data were not available, we have proposed estimates based on appropriate extrapolation techniques. We have derived global estimates of pyrogenic emissions for important species emitted by the various types of biomass burning and compared our estimates with results from inverse modeling studies.

3,556 citations

Journal ArticleDOI

3,152 citations

Book
01 Sep 2011
TL;DR: In this paper, the Ecosystem Concept is used to describe the Earth's Climate System and Geology and Soils, and the ecosystem concept is used for managing and sustaining ecosystems.
Abstract: I. CONTEXT * The Ecosystem Concept * Earth's Climate System * Geology and Soils * II. MECHANISMS * Terrestrial Water and Energy Balance * Carbon Input to Terrestrial Ecosystems * Terrestrial Production Processes * Terrestrial Decomposition * Terrestrial Plant Nutrient Use * Terrestrial Nutrient Cycling * Aquatic Carbon and Nutrient Cycling * Trophic Dynamics * Community Effects on Ecosystem Processes * III. PATTERNS * Temporal Dynamics * Landscape Heterogeneity and Ecosystem Dynamics * IV. INTEGRATION * Global Biogeochemical Cycles * Managing and Sustaining Ecosystem * Abbreviations * Glossary * References

3,086 citations