scispace - formally typeset
Search or ask a question
Author

Robert J. Yokelson

Bio: Robert J. Yokelson is an academic researcher from University of Montana. The author has contributed to research in topics: Aerosol & Smoke. The author has an hindex of 66, co-authored 149 publications receiving 14827 citations. Previous affiliations of Robert J. Yokelson include University of the Witwatersrand & National Oceanic and Atmospheric Administration.
Topics: Aerosol, Smoke, Combustion, Trace gas, Particulates


Papers
More filters
01 Jan 2009
TL;DR: In this paper, during the 2006 dry season of highly elevated concentrations of cyanides in the atmosphere above Mexico City and the surrounding plains, the authors demonstrate that biomass burning significantly impacted air qual- ity in the region.
Abstract: Observations during the 2006 dry season of highly elevated concentrations of cyanides in the atmosphere above Mexico City (MC) and the surrounding plains demonstrate that biomass burning (BB) significantly impacted air qual- ity in the region. We find that during the period of our measurements, fires contribute more than half of the organic aerosol mass and submicron aerosol scattering, and one third of the enhancement in benzene, reactive nitrogen, and carbon monoxide in the outflow from the plateau. The combination of biomass burning and anthropogenic emissions will affect ozone chemistry in the MC outflow.

4 citations

Journal ArticleDOI
TL;DR: Yokelson et al. as discussed by the authors showed a consistent trend of increasing emissions with decreasing MCE indicating fuel-independent production largely by smoldering combustion, and a large range in the EF observed (factor of ∼20).
Abstract: Atmos. Chem. Phys., 8, 4497, 2008 www.atmos-chem-phys.net/8/4497/2008/ © Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Atmospheric Chemistry and Physics Corrigendum to “The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data” published in Atmos. Chem. Phys., 8, 3509–3527, 2008 R. J. Yokelson 1 , T. J. Christian 1 , T. G. Karl 2 , and A. Guenther 2 1 University 2 National of Montana, Department of Chemistry, Missoula, MT, USA Center for Atmospheric Research, Boulder, CO, USA Erroneously Fig. 2 in the published article includes panel (b) twice. Below the correct figure with panel (a) and (b) is shown. a) Air Lab Ground EFCH 4 (g/kg) MCE b) Air-FTIR Lab-FTIR Ground Lab-PTR EFCH 3 OH (g/kg) MCE Fig. 2. Presentation of all the emission factors measured dur- ing TROFFEE from ground-based, airborne, and laboratory plat- forms for CH 4 (a) and CH 3 OH (b). Despite differences in fu- els between the experiments, these compounds show a consistent trend of increasing emissions with decreasing MCE indicating fuel- independent production largely by smoldering combustion. There is also a large range in the EF observed (factor of ∼20). Correspondence to: R. J. Yokelson (bob.yokelson@umontana.edu) Published by Copernicus Publications on behalf of the European Geosciences Union.

4 citations

Journal ArticleDOI
TL;DR: The Kathmandu valley in Nepal suffers from unhealthy air quality, with mean pre-monsoon submicron particulate matter concentration (PM1) of 40 µg m-3 and daily peaks over 75 µgm-3 as discussed by the authors .
Abstract: The Kathmandu Valley in Nepal suffers from unhealthy air quality, with mean pre-monsoon submicron particulate matter concentration (PM1) of 40 µg m-3 and daily peaks over 75 µg m-3. A...

4 citations

Journal ArticleDOI
TL;DR: In this paper , the authors used Fourier transform infrared spectroscopy (FTIR), whole air sampling (WAS), photoacoustic extinctiometers (PAX), and detailed off-line analyses of particulate matter (PM) collected on filters.
Abstract: Abstract. Peat fires in Southeast Asia are a major source of trace gases and particles to the regional-global atmosphere that influence atmospheric chemistry, climate, and air quality. During the November 2015 record-high Ocean Niño Index (ONI, 2.6) our mobile smoke sampling team made the first, or rare, field measurements of numerous trace gases, aerosol optical properties, and aerosol chemistry and mass emissions for fires burning only peat in the Indonesian province of Central Kalimantan (on the island of Borneo). The measurements used Fourier transform infrared spectroscopy (FTIR), whole air sampling (WAS), photoacoustic extinctiometers (PAX, 401 and 870 nm), and detailed off-line analyses of particulate matter (PM) collected on filters. In September–November 2019 we measured peat fire trace gas emissions again, using WAS only, under El Niño–Southern Oscillation (ENSO)-neutral conditions (ONI, 0.3) in more remote areas of Central Kalimantan and also the Indonesian provinces of Riau, Jambi, and South Sumatra, all on the island of Sumatra. The 2019 measurements significantly expanded the geographic range and climate conditions sampled. This paper presents the 2019 results and synthesizes them with the previous fieldwork to converge on more robust regional average emission factors (EFs; grams of compound per kilogram of biomass burned) for authentic peat fires. In addition, samples of peat imported from Indonesia were burned in US laboratories, and the EFs and optical properties were characterized in more detail than in the field by a larger suite of instrumentation. We use the improved knowledge of regional emissions based on the expanded field measurements to select the most representative lab data and compute a synthesized, more “chemically complete” set of EFs and aerosol optical properties for tropical peat fires. The modified combustion efficiency (MCE) values for the peat smoke sampled in 2019 were within the range of MCEs sampled in 2015, but with a lower average in 2019 (0.718±0.021, range 0.687–0.736) than 2015 (0.772±0.035, range 0.693–0.835). Averaging the new and older data together suggests an updated MCE for tropical peat fires of ∼0.76. Despite the difference in MCE, the study-average methane emission factors (EF CH4) were remarkably similar across the 2 years probing different regions: 9.42±2.51 g kg−1 in 2019 and 9.51±4.74 g kg−1 in 2015. When parsing the 2019 samples by province, the EFs for non-methane organic gases (NMOGs) were about 3 times higher in South Sumatra and Central Kalimantan than in Jambi and Riau, but the overall 2019 study average was only ∼15 % higher than the 2015 study average. South Sumatra peat fires emitted higher amounts of carbonyl and dimethyl sulfide, suggesting a volcanic or marine influence or effects of agricultural chemicals. The lab and fieldwork taken together provide EFs for 230 trace gases including CO2 (1544 g kg−1), CO (315 g kg−1), and CH4 (9.8 g kg−1). These are significant adjustments to IPCC-recommended EFs, −9 %, +50 %, and −53 %, respectively. We also report EFs for numerous NMOGs, 46 N-containing compounds, and 14 sulfur- or halogen-containing species. The use of high-resolution mass spectrometry in the lab allowed measurement of 82 % more NMOG mass than in the field. Gravimetrically measured EF PM2.5 in the field in 2015 (17.3±5.8 g kg−1) was ∼20 % lower than the average from lab studies (22.4±10.4 g kg−1), perhaps due to higher field temperatures. Taken together the lab and field data show that the single-scattering albedo (SSA) was largely independent of wavelength and MCE in the visible (∼0.998), but lower at low MCE at 401 and 405 nm with a value of 0.958 at the study-average MCE. The absorption Ångström exponent (AAE) at the average MCE was 5.7. By far the largest PM component was weakly absorbing insoluble organic carbon.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

4,591 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of emission factors for a large variety of species emitted from biomass fires, where data were not available, they have proposed estimates based on appropriate extrapolation techniques.
Abstract: A large body of information on emissions from the various types of biomass burning has been accumulated over the past decade, to a large extent as a result of International Geosphere-Biosphere Programme/International Global Atmospheric Chemistry research activities. Yet this information has not been readily accessible to the atmospheric chemistry community because it was scattered over a large number of publications and reported in numerous different units and reference systems. We have critically evaluated the presently available data and integrated these into a consistent format. On the basis of this analysis we present a set of emission factors for a large variety of species emitted from biomass fires. Where data were not available, we have proposed estimates based on appropriate extrapolation techniques. We have derived global estimates of pyrogenic emissions for important species emitted by the various types of biomass burning and compared our estimates with results from inverse modeling studies.

3,556 citations

Journal ArticleDOI

3,152 citations

Book
01 Sep 2011
TL;DR: In this paper, the Ecosystem Concept is used to describe the Earth's Climate System and Geology and Soils, and the ecosystem concept is used for managing and sustaining ecosystems.
Abstract: I. CONTEXT * The Ecosystem Concept * Earth's Climate System * Geology and Soils * II. MECHANISMS * Terrestrial Water and Energy Balance * Carbon Input to Terrestrial Ecosystems * Terrestrial Production Processes * Terrestrial Decomposition * Terrestrial Plant Nutrient Use * Terrestrial Nutrient Cycling * Aquatic Carbon and Nutrient Cycling * Trophic Dynamics * Community Effects on Ecosystem Processes * III. PATTERNS * Temporal Dynamics * Landscape Heterogeneity and Ecosystem Dynamics * IV. INTEGRATION * Global Biogeochemical Cycles * Managing and Sustaining Ecosystem * Abbreviations * Glossary * References

3,086 citations