scispace - formally typeset
Search or ask a question
Author

Robert K. Remple

Bio: Robert K. Remple is an academic researcher. The author has contributed to research in topics: System identification & Flight management system. The author has an hindex of 3, co-authored 6 publications receiving 489 citations.

Papers
More filters
Book
01 Jan 2006
TL;DR: Tischler and Remple as discussed by the authors presented proven methods, practical guidelines, and real-world flight-test results for a wide range of state-of-the-art flight vehicles, addressing the entire process of aircraft and rotorcraft system identification from instrumentation and flight testing to model determination, validation and application of the results.
Abstract: Presenting proven methods, practical guidelines, and real-world flight-test results for a wide range of state-of-the-art flight vehicles, "Aircraft and Rotorcraft System Identification, Second Edition" addresses the entire process of aircraft and rotorcraft system identification from instrumentation and flight testing to model determination, validation, and application of the results. In this highly anticipated second edition, authors Tischler and Remple have added dedicated in-depth chapters presenting extended model structures and identification results for large flexible transport aircraft, and the detailed methodology to develop a continuous full flight envelope simulation model from individual system identification models and trim test data. Topics Discussed include: Frequency-response methods that are especially well suited for system identification of flight vehicle models from flight-test data; specific guidelines for flight testing, data analysis, and the proper selection of model structure complexity; and emphasis on the importance of physical insight in model development and applications. Special features: student version of CIFER[registered] with updated graphical user interface using MATLAB[registered]; numerous flight-test results for both manned and unmanned vehicles illustrating the wide-ranging roles of system identification, including the analysis of flight mechanics, feedback control, handling qualities, subsystem dynamics, structural analysis, higher-order models for aircraft and rotorcraft, and simulation; and, extensive problem sets at the end of each chapter, with many exercises based on flight-test data provided for the XV-15 in hover and cruise giving the reader hands-on real-world experience with system identification methods and interpretation of the results.

339 citations

01 Jan 2013
TL;DR: In this highly anticipated second edition, authors Tischler and Remple have added dedicated in-depth chapters presenting extended model structures and identification results for large flexible transport aircraft, and the detailed methodology to develop a continuous full flight envelope simulation model from individual system identification models and trim test data.

6 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This survey reports the characteristics and requirements of UAV networks for envisioned civil applications over the period 2000-2015 from a communications and networking viewpoint and elaborate on general networking related requirements such as connectivity, adaptability, safety, privacy, security, and scalability.
Abstract: The days where swarms of unmanned aerial vehicles (UAVs) will occupy our skies are fast approaching due to the introduction of cost-efficient and reliable small aerial vehicles and the increasing demand for use of such vehicles in a plethora of civil applications. Governments and industry alike have been heavily investing in the development of UAVs. As such it is important to understand the characteristics of networks with UAVs to enable the incorporation of multiple, coordinated aerial vehicles into the air traffic in a reliable and safe manner. To this end, this survey reports the characteristics and requirements of UAV networks for envisioned civil applications over the period 2000–2015 from a communications and networking viewpoint. We survey and quantify quality-of-service requirements, network-relevant mission parameters, data requirements, and the minimum data to be transmitted over the network. Furthermore, we elaborate on general networking related requirements such as connectivity, adaptability, safety, privacy, security, and scalability. We also report experimental results from many projects and investigate the suitability of existing communication technologies for supporting reliable aerial networking.

1,067 citations

Journal ArticleDOI
22 Apr 2014
TL;DR: In this paper, a brief overview on the recent advances of small-scale UAVs from the perspective of platforms, key elements, and scientific research is provided, particularly on platform design and construction, dynamics modeling, and flight control.
Abstract: This paper provides a brief overview on the recent advances of small-scale unmanned aerial vehicles (UAVs) from the perspective of platforms, key elements, and scientific research. The survey starts with an introduction of the recent advances of small-scale UAV platforms, based on the information summarized from 132 models available worldwide. Next, the evolvement of the key elements, including onboard processing units, navigation sensors, mission-oriented sensors, communication modules, and ground control station, is presented and analyzed. Third, achievements of small-scale UAV research, particularly on platform design and construction, dynamics modeling, and flight control, are introduced. Finally, the future of small-scale UAVs' research, civil applications, and military applications are forecasted.

295 citations

Journal ArticleDOI
TL;DR: The analysis indicates that passive aerodynamic mechanisms contribute to stability, which may help explain how insects are able to achieve stable locomotion on a very small computational budget.

190 citations

Book
15 Oct 2010
TL;DR: In this paper, a qualitative discussion of composites in aircraft structures is presented, where the authors present a theoretical analysis of composite panels under compression and post-buckling analysis for different boundary conditions and load combinations.
Abstract: Preface 1. Applications of advanced composites in aircraft structures References 2. Cost of Composites- A qualitative discussion 2.1 Recurring cost 2.2 Non-recurring cost 2.3 Technology selection 2.4 Summary and conclusions Exercises References 3. Review of Classical Laminated-Plate Theory 3.1 Composite Materials - Definitions, symbology and terminology 3.2 Constitutive equations in three dimensions 3.3 Constitutive equations in two dimensions - Plane stress Exercises References 4. Review of laminate strength and failure criteria 4.1 Maximum stress failure theory 4.2 Maximum strain failure theory 4.3 Tsai-Hill failure theory 4.4 Tsai-Wu failure theory 4.5 Other failure theories References 5. Composite structural components and mathematical formulation 5.1 Overview of composite airframe 5.2 Governing equations 5.3 Reductions of governing equations - Applications to specific problems 5.4 Energy methods Exercises References 6. Buckling of composite plates 6.1 Buckling of rectangular composite plate under biaxial loading 6.2 Buckling of rectangular composite plate under uniaxial compression 6.3 Buckling of rectangular composite plate under shear 6.4 Buckling of long rectangular composite plates under shear 6.5 Buckling of rectangular composite plates under combined loads 6.6 Design equations for different boundary conditions and load combinations Exercises References 7. Post-buckling 7.1 Post-buckling analysis of composite panels under compression 7.2 Post-buckling analysis of composite plates under shear Exercises References 8. Design and analysis of composite beams 8.1 Cross-section definition based on design guidelines 8.2 Cross-sectional properties 8.3 Column buckling 8.4 Beam on elastic foundation under compression 8.5 Crippling 8.6 Importance of radius regions at flange intersections 8.7 Inter-rivet buckling of stiffener flanges 8.8 Application - Analysis of stiffener in a stiffened panel under compression Exercises References 9. Skin-stiffened structure 9.1 Smearing of stiffness properties (equivalent stiffness) 9.2 Failure modes of a stiffened panel 9.3 Additional considerations of stiffened panels Exercises References 10. Sandwich structure 10.1 Sandwich bending stiffness 10.2 Buckling of sandwich structure 10.3 Sandwich wrinkling 10.4 Sandwich crimping 10.5 Sandwich intra-cellular buckling (dimpling) under compression 10.6 Attaching sandwich structures Exercises References 11. Good Design practices and Design "rules of thumb" Exercises References Index

176 citations

Journal ArticleDOI
TL;DR: This survey divides the summaries of system ID research into five UAV groups: helicopter, fixed-wing, multirotor, flapping-Wing, and lighter-than-air, and the research literature is tabulated into five corresponding Uav groups for further research.
Abstract: Remote sensing has traditionally be done with satellites and manned aircraft. While these methods can yield useful scientific data, satellites and manned aircraft have limitations in data frequency, process time, and real time re-tasking. Small low-cost unmanned aerial vehicles (UAVs) can bridge the gap for personal remote sensing for scientific data. Precision aerial imagery and sensor data requires an accurate dynamics model of the vehicle for controller development. One method of developing a dynamics model is system identification (system ID). The purpose of this paper is to provide a survey and categorization of current methods and applications of system ID for small low-cost UAVs. This paper also provides background information on the process of system ID with in-depth discussion on practical implementation for UAVs. This survey divides the summaries of system ID research into five UAV groups: helicopter, fixed-wing, multirotor, flapping-wing, and lighter-than-air. The research literature is tabulated into five corresponding UAV groups for further research.

113 citations