scispace - formally typeset
Search or ask a question
Author

Robert L. Badzey

Other affiliations: Varian Semiconductor
Bio: Robert L. Badzey is an academic researcher from Boston University. The author has contributed to research in topics: Bistability & Charge carrier. The author has an hindex of 12, co-authored 19 publications receiving 1928 citations. Previous affiliations of Robert L. Badzey include Varian Semiconductor.

Papers
More filters
Journal ArticleDOI
20 Sep 2001-Nature
TL;DR: The presence of an electronic inhomogeneity is reported in Bi2Sr2CaCu2O8+x, a consequence of proximity to a Mott insulator resulting in poor screening of the charge potentials associated with the oxygen ions left in the BiO plane after doping, and is indicative of the local nature of the superconducting state.
Abstract: The parent compounds of the copper oxide high-transition-temperature (high-Tc) superconductors are unusual insulators (so-called Mott insulators). Superconductivity arises when they are 'doped' away from stoichiometry. For the compound Bi2Sr2CaCu2O8+x, doping is achieved by adding extra oxygen atoms, which introduce positive charge carriers ('holes') into the CuO2 planes where the superconductivity is believed to originate. Aside from providing the charge carriers, the role of the oxygen dopants is not well understood, nor is it clear how the charge carriers are distributed on the planes. Many models of high-Tc superconductivity accordingly assume that the introduced carriers are distributed uniformly, leading to an electronically homogeneous system as in ordinary metals. Here we report the presence of an electronic inhomogeneity in Bi2Sr2CaCu2O8+x, on the basis of observations using scanning tunnelling microscopy and spectroscopy. The inhomogeneity is manifested as spatial variations in both the local density of states spectrum and the superconducting energy gap. These variations are correlated spatially and vary on the surprisingly short length scale of approximately 14 A. Our analysis suggests that this inhomogeneity is a consequence of proximity to a Mott insulator resulting in poor screening of the charge potentials associated with the oxygen ions left in the BiO plane after doping, and is indicative of the local nature of the superconducting state.

630 citations

Journal ArticleDOI
TL;DR: In this paper, an electronic inhomogeneity was observed in high-Tc superconductor Bi2Sr2CaCu2O8+x using scanning tunnelling microscopy/spectroscopy.
Abstract: The parent compounds of the copper oxide high-Tc superconductors are unusual insulators. Superconductivity arises when they are properly doped away from stoichiometry1. In Bi2Sr2CaCu2O8+x, superconductivity results from doping with excess oxygen atoms, which introduce positive charge carriers (holes) into the CuO2 planes, where superconductivity is believed to originate. The role of these oxygen dopants is not well understood, other than the fact that they provide charge carriers. However, it is not even clear how these charges distribute in the CuO2 planes. Accordingly, many models of high-Tc superconductors simply assume that the charge carriers introduced by doping distribute uniformly, leading to an electronically homogeneous system, as in ordinary metals. Here we report the observation of an electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+x using scanning tunnelling microscopy/spectroscopy. This inhomogeneity is manifested as spatial variations in both the local density of states spectrum and the superconducting energy gap. These variations are correlated spatially and vary on a surprisingly short length scale of ~ 14 Angs. Analysis suggests that the inhomogeneity observed is a consequence of proximity to a Mott insulator resulting in poor screening of the charge potentials associated with the oxygen ions left behind in the BiO plane after doping. Hence this experiment is a direct probe of the local nature of the superconducting state, which is not easily accessible by macroscopic measurements.

584 citations

Journal ArticleDOI
13 Oct 2005-Nature
TL;DR: Stochastic resonance in nanomechanical systems could have a function in the realization of controllable high-speed nanomechamical memory cells, and paves the way for exploring macroscopic quantum coherence and tunnelling.
Abstract: Stochastic resonance is a counterintuitive concept: the addition of noise to a noisy system induces coherent amplification of its response. First suggested as a mechanism for the cyclic recurrence of ice ages, stochastic resonance has been seen in a wide variety of macroscopic physical systems: bistable ring lasers, superconducting quantum interference devices (SQUIDs), magnetoelastic ribbons and neurophysiological systems such as the receptors in crickets and crayfish. Although fundamentally important as a mechanism of coherent signal amplification, stochastic resonance has yet to be observed in nanoscale systems. Here we report the observation of stochastic resonance in bistable nanomechanical silicon oscillators. Our nanomechanical systems consist of beams that are clamped at each end and driven into transverse oscillation with the use of a radiofrequency source. Modulation of the source induces controllable switching of the beams between two stable, distinct states. We observe that the addition of white noise causes a marked amplification of the signal strength. Stochastic resonance in nanomechanical systems could have a function in the realization of controllable high-speed nanomechanical memory cells, and paves the way for exploring macroscopic quantum coherence and tunnelling.

259 citations

PatentDOI
TL;DR: In this article, a memory device includes a mechanical element that exhibits distinct bistable states under amplitude modulation, where the states are dynamically bistably or multi-stable with the application of a drive signal of a given frequency.
Abstract: A memory device includes a mechanical element that exhibits distinct bistable states under amplitude modulation. The states are dynamically bistable or multi-stable with the application of a drive signal of a given frequency. The natural resonance of the element in conjunction with a hysteretic effect produces distinct states over a specific frequency range. Devices with multiple elements that respond to different frequency ranges provided on a common contact are formed with improved density. The devices may be excited and read with magnetomotive, capacitive, piezoelectric and/or optical methods. The devices may be planar oriented or out of plane oriented to permit three dimensional memory structures. DC biases may be used to shift frequency responses to permit an alternate method for differentiating states of the element.

129 citations

Posted Content
TL;DR: In this article, the authors report the realization of a completely controllable high-speed nanomechanical memory element fabricated from single-crystal silicon wafers, which can switch controllably between two stable and distinct states at a single frequency in the megahertz range.
Abstract: We report the realization of a completely controllable high-speed nanomechanical memory element fabricated from single-crystal silicon wafers. This element consists of a doubly-clamped suspended nanomechanical beam structure, which can be made to switch controllably between two stable and distinct states at a single frequency in the megahertz range. Because of their sub-micron size and high normal-mode frequencies, these nanomechanical memory elements offer the potential to rival the current state-of-the-art electronic data storage and processing.

103 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Hybrid quantum circuits combine two or more physical systems, with the goal of harnessing the advantages and strengths of the different systems in order to better explore new phenomena and potentially bring about novel quantum technologies as discussed by the authors.
Abstract: Hybrid quantum circuits combine two or more physical systems, with the goal of harnessing the advantages and strengths of the different systems in order to better explore new phenomena and potentially bring about novel quantum technologies. This article presents a brief overview of the progress achieved so far in the field of hybrid circuits involving atoms, spins, and solid-state devices (including superconducting and nanomechanical systems). How these circuits combine elements from atomic physics, quantum optics, condensed matter physics, and nanoscience is discussed, and different possible approaches for integrating various systems into a single circuit are presented. In particular, hybrid quantum circuits can be fabricated on a chip, facilitating their future scalability, which is crucial for building future quantum technologies, including quantum detectors, simulators, and computers.

1,439 citations

Journal ArticleDOI
15 Nov 2001-Nature
TL;DR: The feasibility of superconducting power cables, magnetic energy-storage devices, transformers, fault current limiters and motors, largely using (Bi,Pb)2Sr2Ca2Cu3Ox conductor, is proven but widespread applications now depend significantly on cost-effective resolution of fundamental materials and fabrication issues, which control the production of low-cost, high-performance conductors of these remarkable compounds.
Abstract: Large-scale superconducting electric devices for power industry depend critically on wires with high critical current densities at temperatures where cryogenic losses are tolerable This restricts choice to two high-temperature cuprate superconductors, (Bi,Pb)2Sr2Ca2Cu3Ox and YBa2Cu3Ox, and possibly to MgB2, recently discovered to superconduct at 39 K Crystal structure and material anisotropy place fundamental restrictions on their properties, especially in polycrystalline form So far, power applications have followed a largely empirical, twin-track approach of conductor development and construction of prototype devices The feasibility of superconducting power cables, magnetic energy-storage devices, transformers, fault current limiters and motors, largely using (Bi,Pb)2Sr2Ca2Cu3Ox conductor, is proven Widespread applications now depend significantly on cost-effective resolution of fundamental materials and fabrication issues, which control the production of low-cost, high-performance conductors of these remarkable compounds

1,201 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compare and contrast the advantages of two limiting perspectives on the high-temperature superconductor: weak coupling, in which correlation effects are treated as a perturbation on an underlying metallic (although renormalized) Fermi-liquid state, and strong coupling, where the magnetism is associated with well defined localized spins, and stripes are viewed as a form of micro phase separation.
Abstract: This article discusses fluctuating order in a quantum disordered phase proximate to a quantum critical point, with particular emphasis on fluctuating stripe order. Optimal strategies are derived for extracting information concerning such local order from experiments, with emphasis on neutron scattering and scanning tunneling microscopy. These ideas are tested by application to two model systems---an exactly solvable one-dimensional (1D) electron gas with an impurity, and a weakly interacting 2D electron gas. Experiments on the cuprate high-temperature superconductors which can be analyzed using these strategies are extensively reviewed. The authors adduce evidence that stripe correlations are widespread in the cuprates. They compare and contrast the advantages of two limiting perspectives on the high-temperature superconductor: weak coupling, in which correlation effects are treated as a perturbation on an underlying metallic (although renormalized) Fermi-liquid state, and strong coupling, in which the magnetism is associated with well-defined localized spins, and stripes are viewed as a form of micro phase separation. The authors present quantitative indicators that the latter view better accounts for the observed stripe phenomena in the cuprates.

1,081 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a unified framework for describing quasi-localized states in the vicinity of impurity sites in conventional and unconventional superconductors and show that these fluctuations affect the density of states and are, strictly speaking, gapless in the presence of an arbitrarily small concentration of magnetic impurities.
Abstract: We review recent developments in our understanding of how impurities influence the electronic states in the bulk of superconductors. Our focus is on the quasi-localized states in the vicinity of impurity sites in conventional and unconventional superconductors and our goal is to provide a unified framework for their description. The non-magnetic impurity resonances in unconventional superconductors are directly related to the Yu-Shiba-Rusinov states around magnetic impurities in conventional s-wave systems. We review the physics behind these states, including quantum phase transition between screened and unscreened impurity, and emphasize recent work on d-wave superconductors. The bound states are most spectacularly seen in scanning tunneling spectroscopy measurements on high-$T_c$ cuprates, which we describe in detail. We also discuss very recent progress on the states coupled to impurity sites which have their own dynamics, and impurity resonances in the presence of an order competing with superconductivity. Last part of the review is devoted to influence of local deviations of the impurity concentration from its average value on the density of states in s-wave superconductors. We review how these fluctuations affect the density of states and show that s-wave superconductors are, strictly speaking, gapless in the presence of an arbitrarily small concentration of magnetic impurities.

968 citations

Journal ArticleDOI
TL;DR: The use of tunneling microscopy and spectroscopy has played a central role in the experimental verification of the microscopic theory of superconductivity in classical superconductors as discussed by the authors.
Abstract: Tunneling spectroscopy has played a central role in the experimental verification of the microscopic theory of superconductivity in classical superconductors. Initial attempts to apply the same approach to high-temperature superconductors were hampered by various problems related to the complexity of these materials. The use of scanning tunneling microscopy and spectroscopy (STM and STS) on these compounds allowed the main difficulties to be overcome. This success motivated a rapidly growing scientific community to apply this technique to high-temperature superconductors. This paper reviews the experimental highlights obtained over the last decade. The crucial efforts to gain control over the technique and to obtain reproducible results are first recalled. Then a discussion on how the STM and STS techniques have contributed to the study of some of the most unusual and remarkable properties of high-temperature superconductors is presented: the unusually large gap values and the absence of scaling with the critical temperature, the pseudogap and its relation to superconductivity, the unprecedented small size of the vortex cores and its influence on vortex matter, the unexpected electronic properties of the vortex cores, and the combination of atomic resolution and spectroscopy leading to the observation of periodic local density of states modulations in the superconducting and pseudogap states and in the vortex cores.

790 citations