scispace - formally typeset
Search or ask a question
Author

Robert L. Jarret

Other affiliations: Agricultural Research Service
Bio: Robert L. Jarret is an academic researcher from United States Department of Agriculture. The author has contributed to research in topics: Germplasm & Restriction fragment length polymorphism. The author has an hindex of 37, co-authored 91 publications receiving 3337 citations. Previous affiliations of Robert L. Jarret include Agricultural Research Service.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that two different T-DNA regions are present in the cultivated sweet potato genome and that these foreign genes are expressed at detectable levels in different tissues of the sweet potato plant, which could affect the current consumer distrust of the safety of transgenic food crops.
Abstract: Agrobacterium rhizogenes and Agrobacterium tumefaciens are plant pathogenic bacteria capable of transferring DNA fragments [transfer DNA (T-DNA)] bearing functional genes into the host plant genome. This naturally occurring mechanism has been adapted by plant biotechnologists to develop genetically modified crops that today are grown on more than 10% of the world’s arable land, although their use can result in considerable controversy. While assembling small interfering RNAs, or siRNAs, of sweet potato plants for metagenomic analysis, sequences homologous to T-DNA sequences from Agrobacterium spp. were discovered. Simple and quantitative PCR, Southern blotting, genome walking, and bacterial artificial chromosome library screening and sequencing unambiguously demonstrated that two different T-DNA regions (IbT-DNA1 and IbT-DNA2) are present in the cultivated sweet potato (Ipomoea batatas [L.] Lam.) genome and that these foreign genes are expressed at detectable levels in different tissues of the sweet potato plant. IbT-DNA1 was found to contain four open reading frames (ORFs) homologous to the tryptophan-2-monooxygenase (iaaM), indole-3-acetamide hydrolase (iaaH), C-protein (C-prot), and agrocinopine synthase (Acs) genes of Agrobacterium spp. IbT-DNA1 was detected in all 291 cultigens examined, but not in close wild relatives. IbT-DNA2 contained at least five ORFs with significant homology to the ORF14, ORF17n, rooting locus (Rol)B/RolC, ORF13, and ORF18/ORF17n genes of A. rhizogenes. IbT-DNA2 was detected in 45 of 217 genotypes that included both cultivated and wild species. Our finding, that sweet potato is naturally transgenic while being a widely and traditionally consumed food crop, could affect the current consumer distrust of the safety of transgenic food crops.

211 citations

Journal ArticleDOI
TL;DR: It is indicated that different loci affecting watermelon fruit size have been under selection during speciation, domestication and improvement, and insights into fruit quality traits and dessert watermelon evolution are provided.
Abstract: Fruit characteristics of sweet watermelon are largely the result of human selection. Here we report an improved watermelon reference genome and whole-genome resequencing of 414 accessions representing all extant species in the Citrullus genus. Population genomic analyses reveal the evolutionary history of Citrullus, suggesting independent evolutions in Citrullus amarus and the lineage containing Citrullus lanatus and Citrullus mucosospermus. Our findings indicate that different loci affecting watermelon fruit size have been under selection during speciation, domestication and improvement. A non-bitter allele, arising in the progenitor of sweet watermelon, is largely fixed in C. lanatus. Selection for flesh sweetness started in the progenitor of C. lanatus and continues through modern breeding on loci controlling raffinose catabolism and sugar transport. Fruit flesh coloration and sugar accumulation might have co-evolved through shared genetic components including a sugar transporter gene. This study provides valuable genomic resources and sheds light on watermelon speciation and breeding history.

177 citations

Journal ArticleDOI
TL;DR: Results provide strong empirical evidence that complex genetic mechanisms are responsible for SSR allelic variation in Ipomoea and the first report of segregation ratios for microsatellites markers in polyploids is reported.
Abstract: The objectives of the present study were to evaluate the inheritance and nucleotide sequence profiles of microsatellite genetic markers in hexaploid sweetpotato [Ipomoea batatas (L.) Lam.] and its putative tetraploid and diploid ancestors, and to test possible microsatellite mutation mechanisms in polyploids by direct sequencing of alleles. Sixty three microsatellite loci were isolated from genomic libraries of I. batatas and sequenced. PCR primers were designed and used to characterize microsatellite loci in two hexaploid I. batatas populations, a tetraploid Ipomoea trifida population, and a diploid I. trifida population. Nine out of the sixty three primer pairs tested yielded a clearly discernible, heritable banding pattern; five showed Mendelian segregation. All other primer pairs produced either smeared banding patterns, which could not be scored, or no bands at all in I. batatas. All of the primers which produced discernible banding patterns from I. batatas also amplified products of similar size in tetraploid and diploid I. trifida accessions. The sequence analysis of several alleles in the three species showed differences due to mutations in the repeat regions consistent with small differences in the repeat number. However, in some cases insertions/deletions and base substitutions in the microsatellite flanking regions were responsible for polymorphisms in both polyploid and diploid species. These results provide strong empirical evidence that complex genetic mechanisms are responsible for SSR allelic variation in Ipomoea. Four I. batatas microsatellite loci showed polysomic segregation fitting tetraploid segregation ratios. To our knowledge this is the first report of segregation ratios for microsatellites markers in polyploids.

157 citations

Journal ArticleDOI
TL;DR: Molecular analysis of transgenic plants confirmed the stable integration of the transgenes into the peanut genome and GUS expression segregated in a 3∶1 Mendelian ratio in most T1 generation plants.
Abstract: Fertile transgenic plants of peanut (Arachis hypogaea L. cv. New Mexico Valencia A) were produced using an Agrobacterium-mediated transformation system. Leaf section explants were inoculated with A. tumefaciens strain EHA105 harboring the binary vector pBI121 containing the genes for β-glucuronidase (GUS) and neomycin phosphotransferase II (NPTII). Approximately 10% of the shoots regenerated on selection medium were GUS-positive. Five independent transformation events resulted in the production of 52 fertile transgenic peanut plants. On average, 240 d were required between seed germination for explant preparation and the production of mature t1 seed by T0 plants. Molecular analysis of transgenic plants confirmed the stable integration of the transgenes into the peanut genome. GUS expression segregated in a 3∶1 Mendelian ratio in most T1 generation plants.

146 citations

Journal ArticleDOI
01 Aug 1997-Genome
TL;DR: Simple sequence repeat length polymorphisms were utilized to examine genetic relatedness among accessions of watermelon (Citrullus lanatus (Thunb.) Matsum) and delineated 4 groups at the 25% level of genetic similarity.
Abstract: Simple sequence repeat length polymorphisms were utilized to examine genetic relatedness among accessions of watermelon (Citrullus lanatus (Thunb.) Matsum. &Nakai). A size-fractionated TaqI genomic...

125 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

Journal ArticleDOI
TL;DR: Internal Organization of the Plant Body, from embryo to the Adult Plant, and some Factors in Development of Secondary Xylem: Common Types of Secondary Growth.
Abstract: INTRODUCTION. Internal Organization of the Plant Body. Summary of Types of Cells and Tissues. General References. DEVELOPMENT OF THE SEED PLANT. The Embryo. From embryo to the Adult Plant. Apical Meristems and Their Derivatives. Differentiation, Specialization, and Morphogenesis. References. THE CELL. Cytoplasm. Nucleus. Plastids. Mitochondria. Microbodies. Vacuoles. Paramural Bodies. Ribosomes. Dictyosomes. Endoplasmic Reticulum. Lipid Globules. Microtubules. Ergastic Substances. References. CELL WALL. Macromolecular Components and Their Organization in the Wall. Cell Wall Layers. Intercellular Spaces. Pits, Primary Pit--Fields, and Plasmodesmata. Origin of Cell Wall During Cell Division. Growth of Cell Wall. References. PARENCHYMA AND COLLENCHYMA. Parenchyma. Collenchyma. References. SCLERENCHYMA. Sclereids. Fibers. Development of Sclereids and Fibers. References. EPIDERMIS. Composition. Developmental Aspects. Cell Wall. Stomata. Trichomes. References. XYLEM: GENERAL STRUCTURE AND CELL TYPES. Gross Structure of Secondary Xylem. Cell Types in the Secondary Xylem. Primary Xylem. Differentiation of Tracheary Elements. References. XYLEM: VARIATION IN WOOD STRUCTURE. Conifer Wood. Dicotyledon Wood. Some Factors in Development of Secondary Xylem. Identification of Wood. References. VASCULAR CAMBIUM. Organization of Cambium. Developmental Changes in the Initial Layer. Patterns and Causal Relations in Cambial Activity. References. PHLOEM. Cell Types. Primary Phloem. Secondary Phloem. References. PERIDERM. Structure of Periderm and Related Tissues. Development of Periderm. Outer Aspect of Bark in Relation to Structure. Lenticels. References. SECRETORY STRUCTURES. External Secretory Structures. Internal Secretory Structures. References. THE ROOT: PRIMARY STATE OF GROWTH. Types of Roots. Primary Structure. Development. References. THE ROOT: SECONDARY STATE OF GROWTH AND ADVENTITIOUS ROOTS. Common Types of Secondary Growth. Variations in Secondary Growths. Physiologic Aspects of Secondary Growth in Roots. Adventitious Roots. References. THE STEM: PRIMARY STATE OF GROWTH. External Morphology. Primary Structure. Development. References. THE STEM: SECONDARY GROWTH AND STRUCTURAL TYPES. Secondary Growth. Types of Stems. References. THE LEAF: BASIC STRUCTURE AND DEVELOPMENT. Morphology. Histology of Angiosperm Leaf. Development. Abscission. References. THE LEAF: VARIATIONS IN STRUCTURE. Leaf Structure and Environment. Dicotyledon Leaves. Monocotyledon Leaves. Gymnosperm Leaves. References. THE FLOWER: STRUCTURE AND DEVELOPMENT. Concept. Structure. Development. References. THE FLOWER: REPRODUCTIVE CYCLE. Microsporogenesis. Pollen. Male Gametophyte. Megasporogenesis. Female Gametophyte. Fertilization. References. THE FRUIT. Concept and Classification. The Fruit Wall. Fruit Types. Fruit Growths. Fruit Abscission. References. THE SEED. Concept and Morphology. Seed Development. Seed Coat. Nutrient Storage Tissues. References. EMBRYO AND SEEDLING. Mature Embryo. Development of Embryo. Classification of Embryos. Seedling. References. Glossary. Index.

1,454 citations

Journal ArticleDOI
TL;DR: Four protocols for sample preparation (suspensions of intact cell nuclei) and the analysis of nuclear DNA amounts using FCM are presented and the most frequent problems encountered with plant material such as the interference of secondary metabolites are described.
Abstract: Flow cytometry (FCM) using DNA-selective fluorochromes is now the prevailing method for the measurement of nuclear DNA content in plants. Ease of sample preparation and high sample throughput make it generally better suited than other methods such as Feulgen densitometry to estimate genome size, level of generative polyploidy, nuclear replication state and endopolyploidy (polysomaty). Here we present four protocols for sample preparation (suspensions of intact cell nuclei) and describe the analysis of nuclear DNA amounts using FCM. We consider the chemicals and equipment necessary, the measurement process, data analysis, and describe the most frequent problems encountered with plant material such as the interference of secondary metabolites. The purpose and requirement of internal and external standardization are discussed. The importance of using a correct terminology for DNA amounts and genome size is underlined, and its basic principles are explained.

1,143 citations

Journal ArticleDOI
TL;DR: How HGT has shaped the web of life is described using examples of HGT among prokaryotes, between proKaryotes and eukaryote, and even between multicellular eukaries, to discuss replacement and additive HGT.
Abstract: Horizontal gene transfer (HGT) is the sharing of genetic material between organisms that are not in a parent-offspring relationship. HGT is a widely recognized mechanism for adaptation in bacteria and archaea. Microbial antibiotic resistance and pathogenicity are often associated with HGT, but the scope of HGT extends far beyond disease-causing organisms. In this Review, we describe how HGT has shaped the web of life using examples of HGT among prokaryotes, between prokaryotes and eukaryotes, and even between multicellular eukaryotes. We discuss replacement and additive HGT, the proposed mechanisms of HGT, selective forces that influence HGT, and the evolutionary impact of HGT on ancestral populations and existing populations such as the human microbiome.

938 citations