scispace - formally typeset
Search or ask a question
Author

Robert L. McPherron

Other affiliations: Nagoya University, University of California, Kyoto University  ...read more
Bio: Robert L. McPherron is an academic researcher from University of California, Los Angeles. The author has contributed to research in topics: Substorm & Solar wind. The author has an hindex of 76, co-authored 332 publications receiving 22324 citations. Previous affiliations of Robert L. McPherron include Nagoya University & University of California.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an algorithm is presented for predicting the ground-based Dst index solely from a knowledge of the velocity and density of the solar wind and the north-south solar magnetospheric component of the interplanetary magnetic field.
Abstract: An algorithm is presented for predicting the ground-based Dst index solely from a knowledge of the velocity and density of the solar wind and the north-south solar magnetospheric component of the interplanetary magnetic field. The three key elements of this model are an adjustment for solar wind dynamic pressure, an injection rate linearly proportional to the dawn-to-dusk component of the interplanetary electric field which is zero for electric fields below 0.5 mV m−1, and an exponential decay rate of the ring current with an e folding time of 7.7 hours. The algorithm is used to predict the Dst signature of seven geomagnetic storm intervals in 1967 and 1968. In addition to being quite successful, considering the simplicity of the model, the algorithm pinpoints the causes of various types of storm behavior. A main phase is initiated whenever the dawn-to-dusk solar magnetospheric component of the interplanetary electric field becomes large and positive. It is preceded by an initial phase of increased Dst if the solar wind dynamic pressure increases suddenly prior to the main phase. The recovery phase is initiated when the injection rate governed by the interplanetary electric field drops below the ring current decay rate associated with the ring current strength built up during the main phase. Variable recovery rates are generally due to additional injection during the recovery phase. This one algorithm accounts for magnetospheric behavior at quiet and at disturbed times and seems capable of predicting the behavior of Dst during even the largest of storms.

1,286 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a phenomenological model of the magnetospheric substorm sequence, which can be divided into three main phases: the growth phase, the expansion phase, and the recovery phase.
Abstract: In the eight preceding papers, two magnetospheric substorms on August 15, 1968, were studied with data derived from many sources. In this, the concluding paper, we attempt a synthesis of these observations, presenting a phenomenological model of the magnetospheric substorm. On the basis of our results for August 15, together with previous reports, we believe that the substorm sequence can be divided into three main phases: the growth phase, the expansion phase, and the recovery phase. Observations for each of the first three substorms on this day are organized according to this scheme. We present these observations as three distinct chronologies, which we then summarize as a phenomenological model. This model is consistent with most of our observations on August 15, as well as with most previous reports. In our interpretation we expand our phenomenological model, briefly described in several preceding papers. This model follows closely the theoretical ideas presented more quantitatively in recent papers by Coroniti and Kennel (1972a, b; 1973). A southward turning of the interplanetary magnetic field is accompanied by erosion of the dayside magnetosphere, flux transport to the geomagnetic tail, and thinning and inward motion of the plasma sheet. Our observations indicate, furthermore, that the expansionmore » phase of substorms can originate near the inner edge of thc plasm sheet as a consequence of rapid plasma sheet thinnig. At this time a portion of the inner edge of the tail current is short circuited' through the ionosphere. This process is consistent with the formation of a neutral point in the near-tail region and its subsequent propagation tailward. However, the onset of the expansion phase of substorms is found to be far from a simple process. Expansion phases can be centered at local times far from midnight, can apparently be localized to one meridian, and can have multiple onsets centered at different local times. Such behavior indicates that, in comparing observations occurring in different substorms, careful note should be made of the localization and central meridian of cach substorm. (auth)« less

1,138 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the NENL model of magnetospheric substorms, including the role of coupling with the solar wind and interplanetary magnetic field, the growth phase sequence, the expansion phase (and onset), and the recovery phase.
Abstract: The near-Earth neutral line (NENL) model of magnetospheric substorms is reviewed. The observed phenomenology of substorms is discussed including the role of coupling with the solar wind and interplanetary magnetic field, the growth phase sequence, the expansion phase (and onset), and the recovery phase. New observations and modeling results are put into the context of the prior model framework. Significant issues and concerns about the shortcomings of the NENL model are addressed. Such issues as ionosphere-tail coupling, large-scale mapping, onset trigger- ing, and observational timing are discussed. It is concluded that the NENL model is evolving and being improved so as to include new observations and theoretical insights. More work is clearly required in order to incorporate fully the complete set of ionospheric, near-tail, midtail, and deep- tail features of substorms. Nonetheless, the NENL model still seems to provide the best avail- able framework for ordering the complex, global manifestations of substorms.

992 citations

Journal Article
TL;DR: In this article, observations made during three substorms on August 15, 1968, are shown to be consistent with current theoretical ideas about the cause of substorm, and the phenomenological model described in several preceding papers is further expanded.
Abstract: Observations made during three substorms on August 15, 1968, are shown to be consistent with current theoretical ideas about the cause of substorms. The phenomenological model described in several preceding papers is further expanded. This model follows closely the theoretical ideas presented more quantitatively in recent papers by Coronti and Kennel (1972 and 1973).

951 citations

Journal ArticleDOI
TL;DR: In this article, it was proposed that the semiannual variation in geomagnetic activity is caused by a semiannually variation in the effective southward component of the interplanetary field.
Abstract: It is proposed that the semiannual variation in geomagnetic activity is caused by a semiannual variation in the effective southward component of the interplanetary field. The southward field arises because the interplanetary field is ordered in the solar equatorial coordinate system, whereas the interaction with the magnetosphere is controlled by a magnetospheric system. Several simple models utilizing this effective modulation of the southward component of the interplanetary field are examined. One of these closely predicts the observed phase and amplitude of the semiannual variation. This model assumes that northward interplanetary fields are noninteracting and that the interaction with southward fields is ordered in solar magnetospheric coordinates. The prediction of the diurnal variation of the strength of the interaction at the magnetopause by this model, does not, however, match the diurnal variation of geomagnetic activity as derived from ground-based data.

943 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, an attempt is made to define a geomagnetic storm as an interval of time when a sufficiently intense and long-lasting interplanetary convection electric field leads, through a substantial energization in the magnetosphere-ionosphere system, to an intensified ring current sufficiently strong to exceed some key threshold of the quantifying storm time Dst index.
Abstract: After a brief review of magnetospheric and interplanetary phenomena for intervals with enhanced solar wind-magnetosphere interaction, an attempt is made to define a geomagnetic storm as an interval of time when a sufficiently intense and long-lasting interplanetary convection electric field leads, through a substantial energization in the magnetosphere-ionosphere system, to an intensified ring current sufficiently strong to exceed some key threshold of the quantifying storm time Dst index. The associated storm/substorm relationship problem is also reviewed. Although the physics of this relationship does not seem to be fully understood at this time, basic and fairly well established mechanisms of this relationship are presented and discussed. Finally, toward the advancement of geomagnetic storm research, some recommendations are given concerning future improvements in monitoring existing geomagnetic indices as well as the solar wind near Earth.

1,963 citations

Journal ArticleDOI
TL;DR: The Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission is the fifth NASA Medium-class Explorer (MIDEX), launched on February 17, 2007 to determine the trigger and large-scale evolution of substorms as discussed by the authors.
Abstract: The Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission is the fifth NASA Medium-class Explorer (MIDEX), launched on February 17, 2007 to determine the trigger and large-scale evolution of substorms. The mission employs five identical micro-satellites (hereafter termed “probes”) which line up along the Earth’s magnetotail to track the motion of particles, plasma and waves from one point to another and for the first time resolve space–time ambiguities in key regions of the magnetosphere on a global scale. The probes are equipped with comprehensive in-situ particles and fields instruments that measure the thermal and super-thermal ions and electrons, and electromagnetic fields from DC to beyond the electron cyclotron frequency in the regions of interest. The primary goal of THEMIS, which drove the mission design, is to elucidate which magnetotail process is responsible for substorm onset at the region where substorm auroras map (∼10 RE): (i) a local disruption of the plasma sheet current (current disruption) or (ii) the interaction of the current sheet with the rapid influx of plasma emanating from reconnection at ∼25 RE. However, the probes also traverse the radiation belts and the dayside magnetosphere, allowing THEMIS to address additional baseline objectives, namely: how the radiation belts are energized on time scales of 2–4 hours during the recovery phase of storms, and how the pristine solar wind’s interaction with upstream beams, waves and the bow shock affects Sun–Earth coupling. THEMIS’s open data policy, platform-independent dataset, open-source analysis software, automated plotting and dissemination of data within hours of receipt, dedicated ground-based observatory network and strong links to ancillary space-based and ground-based programs. promote a grass-roots integration of relevant NASA, NSF and international assets in the context of an international Heliophysics Observatory over the next decade. The mission has demonstrated spacecraft and mission design strategies ideal for Constellation-class missions and its science is complementary to Cluster and MMS. THEMIS, the first NASA micro-satellite constellation, is a technological pathfinder for future Sun-Earth Connections missions and a stepping stone towards understanding Space Weather.

1,456 citations

Journal ArticleDOI
TL;DR: A review of the models of magnetic field line merging is given in this paper, where the authors describe the process whereby plasma flows across a surface which separates regions including topologically different magnetic field lines.
Abstract: A review is presented of the models of magnetic field line merging defined as the process whereby plasma flows across a surface which separates regions including topologically different magnetic field lines. The models examined are characterized by uniform and antiparallel external magnetic fields. An attempt is made to simplify the presentation of the models, to clarify some doubtful mathematical points, or to extend the results to a different range of physical parameters. The models are described from a hydromagnetic point of view, with the configuration in any given case being determined by the boundary conditions. It is shown that the models developed by Sweet (1958), Parker (1957, 1963), Petschek (1964), Sonnerup (1970), and by Yeh and Axford (1970) are basically consistent, describing different aspects of the same problem; however, there is not a single model that would account for all the cases considered. The singular models and the compressible similarity models are physically not feasible.

1,310 citations

Journal ArticleDOI
TL;DR: In this article, an algorithm is presented for predicting the ground-based Dst index solely from a knowledge of the velocity and density of the solar wind and the north-south solar magnetospheric component of the interplanetary magnetic field.
Abstract: An algorithm is presented for predicting the ground-based Dst index solely from a knowledge of the velocity and density of the solar wind and the north-south solar magnetospheric component of the interplanetary magnetic field. The three key elements of this model are an adjustment for solar wind dynamic pressure, an injection rate linearly proportional to the dawn-to-dusk component of the interplanetary electric field which is zero for electric fields below 0.5 mV m−1, and an exponential decay rate of the ring current with an e folding time of 7.7 hours. The algorithm is used to predict the Dst signature of seven geomagnetic storm intervals in 1967 and 1968. In addition to being quite successful, considering the simplicity of the model, the algorithm pinpoints the causes of various types of storm behavior. A main phase is initiated whenever the dawn-to-dusk solar magnetospheric component of the interplanetary electric field becomes large and positive. It is preceded by an initial phase of increased Dst if the solar wind dynamic pressure increases suddenly prior to the main phase. The recovery phase is initiated when the injection rate governed by the interplanetary electric field drops below the ring current decay rate associated with the ring current strength built up during the main phase. Variable recovery rates are generally due to additional injection during the recovery phase. This one algorithm accounts for magnetospheric behavior at quiet and at disturbed times and seems capable of predicting the behavior of Dst during even the largest of storms.

1,286 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a phenomenological model of the magnetospheric substorm sequence, which can be divided into three main phases: the growth phase, the expansion phase, and the recovery phase.
Abstract: In the eight preceding papers, two magnetospheric substorms on August 15, 1968, were studied with data derived from many sources. In this, the concluding paper, we attempt a synthesis of these observations, presenting a phenomenological model of the magnetospheric substorm. On the basis of our results for August 15, together with previous reports, we believe that the substorm sequence can be divided into three main phases: the growth phase, the expansion phase, and the recovery phase. Observations for each of the first three substorms on this day are organized according to this scheme. We present these observations as three distinct chronologies, which we then summarize as a phenomenological model. This model is consistent with most of our observations on August 15, as well as with most previous reports. In our interpretation we expand our phenomenological model, briefly described in several preceding papers. This model follows closely the theoretical ideas presented more quantitatively in recent papers by Coroniti and Kennel (1972a, b; 1973). A southward turning of the interplanetary magnetic field is accompanied by erosion of the dayside magnetosphere, flux transport to the geomagnetic tail, and thinning and inward motion of the plasma sheet. Our observations indicate, furthermore, that the expansionmore » phase of substorms can originate near the inner edge of thc plasm sheet as a consequence of rapid plasma sheet thinnig. At this time a portion of the inner edge of the tail current is short circuited' through the ionosphere. This process is consistent with the formation of a neutral point in the near-tail region and its subsequent propagation tailward. However, the onset of the expansion phase of substorms is found to be far from a simple process. Expansion phases can be centered at local times far from midnight, can apparently be localized to one meridian, and can have multiple onsets centered at different local times. Such behavior indicates that, in comparing observations occurring in different substorms, careful note should be made of the localization and central meridian of cach substorm. (auth)« less

1,138 citations