scispace - formally typeset
Search or ask a question
Author

Robert L. Opila

Bio: Robert L. Opila is an academic researcher from University of Delaware. The author has contributed to research in topics: X-ray photoelectron spectroscopy & Silicon. The author has an hindex of 39, co-authored 239 publications receiving 6689 citations. Previous affiliations of Robert L. Opila include Washington University in St. Louis & Pennsylvania State University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a simple theoretical model for the LUMO and HOMO of layered crystallites is presented, showing that a small (< 15-angstrom) diameter interior foreign seed causes only small shifts of the lowest excited state, to either higher or lower energies.
Abstract: Composite semiconductor crystallites involving CdSe grown on an ZnS seed, and vice versa, have been synthesized and capped with organic ligands in inverse micelle solutions. These composite particles, as well as capped seed crystallites of CdSe and ZnS, are isolated, purified, and characterized for relative atomic composition, structure, and electronic properties. The Debye X-ray scattering equation, when solved for these layered particles, shows that powder X-ray scattering is insensitive to a small foreign inclusion. A simple theoretical model for the LUMO and HOMO of layered crystallites shows that a small (< 15-{angstrom} diameter) interior foreign seed causes only small shifts of the lowest excited state, to either higher or lower energies. The capped CdSe seed and the capped CdSe portion of the layered particle grown on a ZnSe seed undergo low-temperature (169{degree}C) annealing to give near-single-crystal X-ray scattering. However, CdSe annealing is blocked by a surface ZnS layer which is ca. 4 {angstrom} thick. While growth to make composite particles does occur, neither particle shows evidence for epitaxial growth.

856 citations

Journal ArticleDOI
Bo Zhang1, Jia Sun1, Howard E. Katz1, Fang Fang1, Robert L. Opila1 
TL;DR: The contact resistance between Bi(2)Te(3) and PEDOT is identified as the limiting factor for further TE property improvement, and these composites can be used for all-solution-processed TE devices on flexible substrates as a new fabrication option.
Abstract: Newly commercialized PEDOT:PSS products CLEVIOS PH1000 and FE-T, among the most conducting of polymers, show unexpectedly higher Seebeck coefficients than older CLEVIOS P products that were studied by other groups in the past, leading to promising thermoelectric (TE) power factors around 47 μW/m K2 and 30 μW/m K2 respectively. By incorporating both n and p type Bi2Te3 ball milled powders into these PEDOT:PSS products, power factor enhancements for both p and n polymer composite materials are achieved. The contact resistance between Bi2Te3 and PEDOT is identified as the limiting factor for further TE property improvement. These composites can be used for all-solution-processed TE devices on flexible substrates as a new fabrication option.

440 citations

Journal ArticleDOI
TL;DR: In this paper, the growth and properties of both epitaxial and amorphous films of Gd2O3 (κ=14) and Y2O 3 (κ = 18) as the alternative gate dielectrics for Si were presented.
Abstract: We present the materials growth and properties of both epitaxial and amorphous films of Gd2O3 (κ=14) and Y2O3 (κ=18) as the alternative gate dielectrics for Si. The rare earth oxide films were prepared by ultrahigh vacuum vapor deposition from an oxide source. The use of vicinal Si (100) substrates is key to the growth of (110) oriented, single domain films in the Mn2O3 structure. Compared to SiO2 gate oxide, the crystalline Gd2O3 and Y2O3 oxide films show a reduction of electrical leakage at 1 V by four orders of magnitude over an equivalent oxide thickness range of 10–20 A. The leakage of amorphous Y2O3 films is about six orders of magnitude better than SiO2 due to a smooth morphology and abrupt interface with Si. The absence of SiO2 segregation at the dielectric/Si interface is established from infrared absorption spectroscopy and scanning transmission electron microscopy. The amorphous Gd2O3 and Y2O3 films withstand the high temperature anneals to 850 °C and remain electrically and chemically intact.

302 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the nature of the silicon oxide transition region in the vicinity of the Si/SiO2 interface using infrared and x-ray photoelectron spectroscopies.
Abstract: The nature of the silicon oxide transition region in the vicinity of the Si/SiO2 interface is probed by infrared and x-ray photoelectron spectroscopies. The layer-by-layer composition of the interface is evaluated by uniformly thinning thermal oxide films from 31 A down to 6 A. We find that the thickness dependence of the frequencies of the transverse optical and longitudinal optical phonons of the oxide film cannot be reconciled by consideration of simple homogeneous processes such as image charge effects or stress near the interface. Rather, by applying the Bruggeman effective medium approximation, we show that film inhomogeneity in the form of substoichiometric silicon oxide species accounts for the observed spectral changes as the interface is approached. The presence of such substoichiometric oxide species is supported by the thickness dependence of the integrated Si suboxide signal in companion x-ray photoelectron spectra.

243 citations

Journal ArticleDOI
TL;DR: In this article, the effect of aluminum incorporation on the structure and superconducting transition temperature of single crystals of high cuprate perovskite superconductors was investigated and the importance of the Cu-O chains and oxygen stoichiometry to superconductivity was discussed.
Abstract: We have investigated the effect of aluminum incorporation on the structure and superconducting transition temperature of single crystals of high-${T}_{c}$ cuprate perovskite superconductors. The use of alumina crucibles for crystal growth results in incorporation of aluminum to varying extents in crystals of composition ${\mathrm{Ba}}_{2}\mathrm{Y}{\mathrm{Cu}}_{3\ensuremath{-}x}{\mathrm{Al}}_{x}{\mathrm{O}}_{7}$, $x=0\ensuremath{-}0.22$. We have performed x-ray studies on several crystals to determine structural effects of Al incorporation. We find that aluminum substitutes only for copper atoms in the chains. Superconducting transition temperatures ${T}_{c}$ determined by dc diamagnetic susceptibility measurements change only slightly, to \ensuremath{\sim}80 K for $x=0.1$, then drop sharply with higher aluminum concentrations. Results are discussed in relation to the importance of the Cu-O chains and oxygen stoichiometry to superconductivity in ${\mathrm{Ba}}_{2}$Y${\mathrm{Cu}}_{3}$${\mathrm{O}}_{7}$.

185 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
25 Nov 2004-Nature
TL;DR: A novel semiconducting material is proposed—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs), which are fabricated on polyethylene terephthalate sheets and exhibit saturation mobilities and device characteristics are stable during repetitive bending of the TTFT sheet.
Abstract: Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers1. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H)2,3,4,5 and organic semiconductors2,6,7,8,9,10 have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10 cm2 V-1 s-1, which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6–9 cm2 V-1 s-1, and device characteristics are stable during repetitive bending of the TTFT sheet.

7,301 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
TL;DR: In this paper, a synthesis of highly luminescent (CdSe)ZnS composite quantum dots with CdSe cores ranging in diameter from 23 to 55 A was reported.
Abstract: We report a synthesis of highly luminescent (CdSe)ZnS composite quantum dots with CdSe cores ranging in diameter from 23 to 55 A. The narrow photoluminescence (fwhm ≤ 40 nm) from these composite dots spans most of the visible spectrum from blue through red with quantum yields of 30−50% at room temperature. We characterize these materials using a range of optical and structural techniques. Optical absorption and photoluminescence spectroscopies probe the effect of ZnS passivation on the electronic structure of the dots. We use a combination of wavelength dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, small and wide angle X-ray scattering, and transmission electron microscopy to analyze the composite dots and determine their chemical composition, average size, size distribution, shape, and internal structure. Using a simple effective mass theory, we model the energy shift for the first excited state for (CdSe)ZnS and (CdSe)CdS dots with varying shell thickness. Finally, we characterize the...

4,293 citations