scispace - formally typeset
Search or ask a question
Author

Robert Lanfear

Bio: Robert Lanfear is an academic researcher from Australian National University. The author has contributed to research in topics: Phylogenetic tree & Phylogenomics. The author has an hindex of 44, co-authored 109 publications receiving 16059 citations. Previous affiliations of Robert Lanfear include National Evolutionary Synthesis Center & University of Sussex.


Papers
More filters
Journal ArticleDOI
TL;DR: Two new objective methods for the combined selection of best-fit partitioning schemes and nucleotide substitution models are described and implemented in an open-source program, PartitionFinder, which it is hoped will encourage the objective selection of partitions and thus lead to improvements in phylogenetic analyses.
Abstract: In phylogenetic analyses of molecular sequence data, partitioning involves estimating independent models of molecular evolution for different sets of sites in a sequence alignment. Choosing an appropriate partitioning scheme is an important step in most analyses because it can affect the accuracy of phylogenetic reconstruction. Despite this, partitioning schemes are often chosen without explicit statistical justification. Here, we describe two new objective methods for the combined selection of best-fit partitioning schemes and nucleotide substitution models. These methods allow millions of partitioning schemes to be compared in realistic time frames and so permit the objective selection of partitioning schemes even for large multilocus DNA data sets. We demonstrate that these methods significantly outperform previous approaches, including both the ad hoc selection of partitioning schemes (e.g., partitioning by gene or codon position) and a recently proposed hierarchical clustering method. We have implemented these methods in an open-source program, PartitionFinder. This program allows users to select partitioning schemes and substitution models using a range of information-theoretic metrics (e.g., the Bayesian information criterion, akaike information criterion [AIC], and corrected AIC). We hope that PartitionFinder will encourage the objective selection of partitioning schemes and thus lead to improvements in phylogenetic analyses. PartitionFinder is written in Python and runs under Mac OSX 10.4 and above. The program, source code, and a detailed manual are freely available from www.robertlanfear.com/partitionfinder.

4,877 citations

Journal ArticleDOI
TL;DR: Some notable features of IQ-TREE version 2 are described and the key advantages over other software are highlighted.
Abstract: IQ-TREE (http://www.iqtree.org, last accessed February 6, 2020) is a user-friendly and widely used software package for phylogenetic inference using maximum likelihood. Since the release of version 1 in 2014, we have continuously expanded IQ-TREE to integrate a plethora of new models of sequence evolution and efficient computational approaches of phylogenetic inference to deal with genomic data. Here, we describe notable features of IQ-TREE version 2 and highlight the key advantages over other software.

4,337 citations

Journal ArticleDOI
TL;DR: PartitionFinder 2 is a program for automatically selecting best-fit partitioning schemes and models of evolution for phylogenetic analyses that includes the ability to analyze morphological datasets, new methods to analyze genome-scale datasets, and new output formats to facilitate interoperability with downstream software.
Abstract: PartitionFinder 2 is a program for automatically selecting best-fit partitioning schemes and models of evolution for phylogenetic analyses. PartitionFinder 2 is substantially faster and more efficient than version 1, and incorporates many new methods and features. These include the ability to analyze morphological datasets, new methods to analyze genome-scale datasets, new output formats to facilitate interoperability with downstream software, and many new models of molecular evolution. PartitionFinder 2 is freely available under an open source license and works on Windows, OSX, and Linux operating systems. It can be downloaded from www.robertlanfear.com/partitionfinder. The source code is available at https://github.com/brettc/partitionfinder.

3,445 citations

Journal ArticleDOI
Bernhard Misof, Shanlin Liu, Karen Meusemann1, Ralph S. Peters, Alexander Donath, Christoph Mayer, Paul B. Frandsen2, Jessica L. Ware2, Tomas Flouri3, Rolf G. Beutel4, Oliver Niehuis, Malte Petersen, Fernando Izquierdo-Carrasco3, Torsten Wappler5, Jes Rust5, Andre J. Aberer3, Ulrike Aspöck6, Ulrike Aspöck7, Horst Aspöck6, Daniela Bartel6, Alexander Blanke8, Simon Berger3, Alexander Böhm6, Thomas R. Buckley9, Brett Calcott10, Junqing Chen, Frank Friedrich11, Makiko Fukui12, Mari Fujita8, Carola Greve, Peter Grobe, Shengchang Gu, Ying Huang, Lars S. Jermiin1, Akito Y. Kawahara13, Lars Krogmann14, Martin Kubiak11, Robert Lanfear15, Robert Lanfear16, Robert Lanfear17, Harald Letsch6, Yiyuan Li, Zhenyu Li, Jiguang Li, Haorong Lu, Ryuichiro Machida8, Yuta Mashimo8, Pashalia Kapli18, Pashalia Kapli3, Duane D. McKenna19, Guanliang Meng, Yasutaka Nakagaki8, José Luis Navarrete-Heredia20, Michael Ott21, Yanxiang Ou, Günther Pass6, Lars Podsiadlowski5, Hans Pohl4, Björn M. von Reumont22, Kai Schütte11, Kaoru Sekiya8, Shota Shimizu8, Adam Slipinski1, Alexandros Stamatakis3, Alexandros Stamatakis23, Wenhui Song, Xu Su, Nikolaus U. Szucsich6, Meihua Tan, Xuemei Tan, Min Tang, Jingbo Tang, Gerald Timelthaler6, Shigekazu Tomizuka8, Michelle D. Trautwein24, Xiaoli Tong25, Toshiki Uchifune8, Manfred Walzl6, Brian M. Wiegmann26, Jeanne Wilbrandt, Benjamin Wipfler4, Thomas K. F. Wong1, Qiong Wu, Gengxiong Wu, Yinlong Xie, Shenzhou Yang, Qing Yang, David K. Yeates1, Kazunori Yoshizawa27, Qing Zhang, Rui Zhang, Wenwei Zhang, Yunhui Zhang, Jing Zhao, Chengran Zhou, Lili Zhou, Tanja Ziesmann, Shijie Zou, Yingrui Li, Xun Xu, Yong Zhang, Huanming Yang, Jian Wang, Jun Wang, Karl M. Kjer2, Xin Zhou 
07 Nov 2014-Science
TL;DR: The phylogeny of all major insect lineages reveals how and when insects diversified and provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects.
Abstract: Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips. We dated the origin of insects to the Early Ordovician [~479 million years ago (Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the Mississippian (~345 Ma), and the major diversification of holometabolous insects to the Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects.

1,998 citations

Journal ArticleDOI
TL;DR: It is suggested that p-hacking probably does not drastically alter scientific consensuses drawn from meta-analyses, and its effect seems to be weak relative to the real effect sizes being measured.
Abstract: A focus on novel, confirmatory, and statistically significant results leads to substantial bias in the scientific literature. One type of bias, known as “p-hacking,” occurs when researchers collect or select data or statistical analyses until nonsignificant results become significant. Here, we use text-mining to demonstrate that p-hacking is widespread throughout science. We then illustrate how one can test for p-hacking when performing a meta-analysis and show that, while p-hacking is probably common, its effect seems to be weak relative to the real effect sizes being measured. This result suggests that p-hacking probably does not drastically alter scientific consensuses drawn from meta-analyses.

852 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: The FAIR Data Principles as mentioned in this paper are a set of data reuse principles that focus on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals.
Abstract: There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse set of stakeholders—representing academia, industry, funding agencies, and scholarly publishers—have come together to design and jointly endorse a concise and measureable set of principles that we refer to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals. This Comment is the first formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar implementations in the community.

7,602 citations

Journal ArticleDOI
TL;DR: ModelFinder is presented, a fast model-selection method that greatly improves the accuracy of phylogenetic estimates by incorporating a model of rate heterogeneity across sites not previously considered in this context and by allowing concurrent searches of model space and tree space.
Abstract: Model-based molecular phylogenetics plays an important role in comparisons of genomic data, and model selection is a key step in all such analyses. We present ModelFinder, a fast model-selection method that greatly improves the accuracy of phylogenetic estimates by incorporating a model of rate heterogeneity across sites not previously considered in this context and by allowing concurrent searches of model space and tree space.

7,425 citations

Journal ArticleDOI
TL;DR: The software package Tracer is presented, for visualizing and analyzing the MCMC trace files generated through Bayesian phylogenetic inference, which provides kernel density estimation, multivariate visualization, demographic trajectory reconstruction, conditional posterior distribution summary, and more.
Abstract: Bayesian inference of phylogeny using Markov chain Monte Carlo (MCMC) plays a central role in understanding evolutionary history from molecular sequence data. Visualizing and analyzing the MCMC-generated samples from the posterior distribution is a key step in any non-trivial Bayesian inference. We present the software package Tracer (version 1.7) for visualizing and analyzing the MCMC trace files generated through Bayesian phylogenetic inference. Tracer provides kernel density estimation, multivariate visualization, demographic trajectory reconstruction, conditional posterior distribution summary, and more. Tracer is open-source and available at http://beast.community/tracer.

5,492 citations