scispace - formally typeset
Search or ask a question
Author

Robert Learney

Bio: Robert Learney is an academic researcher. The author has contributed to research in topics: Supply chain & Decentralization. The author has co-authored 1 publications.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed a decentralized blockchain-based Internet of Things (IoT) network to improve healthcare, the quality of goods, and supply chain efficiency, using low-cost sensors within IoT networks.

8 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Wearable devices provide an alternative pathway to clinical diagnostics by exploiting various physical, chemical and biological sensors to mine physiological (biophysical and/or biochemical) information in real time (preferably, continuously) and in a non-invasive or minimally invasive manner as mentioned in this paper .
Abstract: Wearable devices provide an alternative pathway to clinical diagnostics by exploiting various physical, chemical and biological sensors to mine physiological (biophysical and/or biochemical) information in real time (preferably, continuously) and in a non-invasive or minimally invasive manner. These sensors can be worn in the form of glasses, jewellery, face masks, wristwatches, fitness bands, tattoo-like devices, bandages or other patches, and textiles. Wearables such as smartwatches have already proved their capability for the early detection and monitoring of the progression and treatment of various diseases, such as COVID-19 and Parkinson disease, through biophysical signals. Next-generation wearable sensors that enable the multimodal and/or multiplexed measurement of physical parameters and biochemical markers in real time and continuously could be a transformative technology for diagnostics, allowing for high-resolution and time-resolved historical recording of the health status of an individual. In this Review, we examine the building blocks of such wearable sensors, including the substrate materials, sensing mechanisms, power modules and decision-making units, by reflecting on the recent developments in the materials, engineering and data science of these components. Finally, we synthesize current trends in the field to provide predictions for the future trajectory of wearable sensors.

119 citations

Journal ArticleDOI
TL;DR: This review explores state‐of‐the‐art biosensors for detecting viral pathogens, serological assays, and inflammatory biomarkers from the material perspective, by discussing their advantages, limitations, and further potential regarding their analytical performance, clinical utility, and point‐of-care adaptability.
Abstract: Several viral infectious diseases appear limitless since the beginning of the 21st century, expanding into pandemic lengths. Thus, there are extensive efforts to provide more efficient means of diagnosis, a better understanding of acquired immunity, and improved monitoring of inflammatory biomarkers, as these are all crucial for controlling the spread of infection while aiding in vaccine development and improving patient outcomes. In this regard, various biosensors have been developed recently to streamline pathogen and immune response detection by addressing the limitations of traditional methods, including isothermal amplification‐based systems and lateral flow assays. This review explores state‐of‐the‐art biosensors for detecting viral pathogens, serological assays, and inflammatory biomarkers from the material perspective, by discussing their advantages, limitations, and further potential regarding their analytical performance, clinical utility, and point‐of‐care adaptability. Additionally, next‐generation biosensing technologies that offer better sensitivity and selectivity, and easy handling for end‐users are highlighted. An emerging example of these next‐generation biosensors are those powered by novel synthetic biology tools, such as clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR‐associated proteins (Cas), in combination with integrated point‐of‐care devices. Lastly, the current challenges are discussed and a roadmap for furthering these advanced biosensing technologies to manage future pandemics is provided.

17 citations

Journal ArticleDOI
TL;DR: In this article , the authors provide an insight into the current research related to printed electrical gas sensors including materials, methods of fabrication, and applications in monitoring food quality, air quality, diagnosis of diseases, and detection of hazardous gases.
Abstract: Printed electrical gas sensors are a low-cost, lightweight, low-power, and potentially disposable alternative to gas sensors manufactured using conventional methods such as photolithography, etching, and chemical vapor deposition. The growing interest in Internet-of-Things, smart homes, wearable devices, and point-of-need sensors has been the main driver fueling the development of new classes of printed electrical gas sensors. In this Perspective, we provide an insight into the current research related to printed electrical gas sensors including materials, methods of fabrication, and applications in monitoring food quality, air quality, diagnosis of diseases, and detection of hazardous gases. We further describe the challenges and future opportunities for this emerging technology.

11 citations

Journal ArticleDOI
TL;DR: A bio-inspired continuous wearable respiration sensor modeled after the lateral line system of fish which is used by the fish for detecting mechanical disturbances in the water is reported, enabling the early detection of a range of disorders that result in altered patterns of respiration.
Abstract: We report a bio-inspired continuous wearable respiration sensor modeled after the lateral line system of fish which is used by the fish for detecting mechanical disturbances in the water. Despite the clinical importance of monitoring respiratory activity in humans and animals, continuous measurements of breathing patterns and rates are rarely performed in or outside of clinics. This is largely due to conventional sensors being too inconvenient or expensive for wearable sensing for most individuals and animals. The bio-inspired air-silicone composite transducer is placed on the chest and measures respiratory activity by continuously measuring the force applied to an air channel embedded inside a silicone-based elastomeric material. The force applied on the surface of the transducer during breathing changes the air pressure inside the channel which is measured using a commercial pressure sensor and mixed-signal wireless electronics. We extensively characterized the transducer produced in this work and tested it with humans, dogs, and laboratory rats. The bio-inspired air-silicone composite transducer may enable the early detection of a range of disorders that result in altered patterns of respiration. The technology reported can also be combined with artificial intelligence and cloud computing to algorithmically detect illness in humans and animals remotely, reducing unnecessary visits to clinics.

6 citations

Journal ArticleDOI
TL;DR: In this article , the authors provide evidence-based insights into the blockchain implementations in the food supply chains and the implications for a successful transition toward a circular economy (CE) requires the food sector to overcome the challenges of today's complex supply chains such as information asymmetry, poor cooperation among stakeholders, and concerns about food safety.
Abstract: Food loss and waste are two of the many problems that modern society is facing. To date, among many solutions, the circular economy is the one prevailing. A successful transition toward a circular economy (CE) requires the food sector to overcome the challenges of today’s complex food supply chains such as information asymmetry, poor cooperation among stakeholders, and concerns about food safety. Blockchain, a form of distributed ledger technology, has been progressively gaining traction in supply chains in areas like data management, certifying product provenance and tracking products. Despite its importance, knowledge around the potential of the blockchain technology in facilitating the transition towards a circular economy in the agri-food sector is fragmented. This review provides evidence-based insights into the blockchain implementations in the food supply chains and the implications for CE. Our findings indicated four major areas that blockchain could accelerate CE in the agri-food sector: improving data utility; supply chain management efficacy; enhanced eco-efficiency; and superior traceability.

5 citations