scispace - formally typeset
Search or ask a question
Author

Robert M. Gray

Bio: Robert M. Gray is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Vector quantization & Quantization (signal processing). The author has an hindex of 75, co-authored 371 publications receiving 39221 citations. Previous affiliations of Robert M. Gray include University of Toledo & Stevens Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: An efficient and intuitive algorithm is presented for the design of vector quantizers based either on a known probabilistic model or on a long training sequence of data.
Abstract: An efficient and intuitive algorithm is presented for the design of vector quantizers based either on a known probabilistic model or on a long training sequence of data. The basic properties of the algorithm are discussed and demonstrated by examples. Quite general distortion measures and long blocklengths are allowed, as exemplified by the design of parameter vector quantizers of ten-dimensional vectors arising in Linear Predictive Coded (LPC) speech compression with a complicated distortion measure arising in LPC analysis that does not depend only on the error vector.

7,935 citations

Book
01 Jan 1991
TL;DR: The author explains the design and implementation of the Levinson-Durbin Algorithm, which automates the very labor-intensive and therefore time-heavy and expensive process of designing and implementing a Quantizer.
Abstract: 1 Introduction- 11 Signals, Coding, and Compression- 12 Optimality- 13 How to Use this Book- 14 Related Reading- I Basic Tools- 2 Random Processes and Linear Systems- 21 Introduction- 22 Probability- 23 Random Variables and Vectors- 24 Random Processes- 25 Expectation- 26 Linear Systems- 27 Stationary and Ergodic Properties- 28 Useful Processes- 29 Problems- 3 Sampling- 31 Introduction- 32 Periodic Sampling- 33 Noise in Sampling- 34 Practical Sampling Schemes- 35 Sampling Jitter- 36 Multidimensional Sampling- 37 Problems- 4 Linear Prediction- 41 Introduction- 42 Elementary Estimation Theory- 43 Finite-Memory Linear Prediction- 44 Forward and Backward Prediction- 45 The Levinson-Durbin Algorithm- 46 Linear Predictor Design from Empirical Data- 47 Minimum Delay Property- 48 Predictability and Determinism- 49 Infinite Memory Linear Prediction- 410 Simulation of Random Processes- 411 Problems- II Scalar Coding- 5 Scalar Quantization I- 51 Introduction- 52 Structure of a Quantizer- 53 Measuring Quantizer Performance- 54 The Uniform Quantizer- 55 Nonuniform Quantization and Companding- 56 High Resolution: General Case- 57 Problems- 6 Scalar Quantization II- 61 Introduction- 62 Conditions for Optimality- 63 High Resolution Optimal Companding- 64 Quantizer Design Algorithms- 65 Implementation- 66 Problems- 7 Predictive Quantization- 71 Introduction- 72 Difference Quantization- 73 Closed-Loop Predictive Quantization- 74 Delta Modulation- 75 Problems- 8 Bit Allocation and Transform Coding- 81 Introduction- 82 The Problem of Bit Allocation- 83 Optimal Bit Allocation Results- 84 Integer Constrained Allocation Techniques- 85 Transform Coding- 86 Karhunen-Loeve Transform- 87 Performance Gain of Transform Coding- 88 Other Transforms- 89 Sub-band Coding- 810 Problems- 9 Entropy Coding- 91 Introduction- 92 Variable-Length Scalar Noiseless Coding- 93 Prefix Codes- 94 Huffman Coding- 95 Vector Entropy Coding- 96 Arithmetic Coding- 97 Universal and Adaptive Entropy Coding- 98 Ziv-Lempel Coding- 99 Quantization and Entropy Coding- 910 Problems- III Vector Coding- 10 Vector Quantization I- 101 Introduction- 102 Structural Properties and Characterization- 103 Measuring Vector Quantizer Performance- 104 Nearest Neighbor Quantizers- 105 Lattice Vector Quantizers- 106 High Resolution Distortion Approximations- 107 Problems- 11 Vector Quantization II- 111 Introduction- 112 Optimality Conditions for VQ- 113 Vector Quantizer Design- 114 Design Examples- 115 Problems- 12 Constrained Vector Quantization- 121 Introduction- 122 Complexity and Storage Limitations- 123 Structurally Constrained VQ- 124 Tree-Structured VQ- 125 Classified VQ- 126 Transform VQ- 127 Product Code Techniques- 128 Partitioned VQ- 129 Mean-Removed VQ- 1210 Shape-Gain VQ- 1211 Multistage VQ- 1212 Constrained Storage VQ- 1213 Hierarchical and Multiresolution VQ- 1214 Nonlinear Interpolative VQ- 1215 Lattice Codebook VQ- 1216 Fast Nearest Neighbor Encoding- 1217 Problems- 13 Predictive Vector Quantization- 131 Introduction- 132 Predictive Vector Quantization- 133 Vector Linear Prediction- 134 Predictor Design from Empirical Data- 135 Nonlinear Vector Prediction- 136 Design Examples- 137 Problems- 14 Finite-State Vector Quantization- 141 Recursive Vector Quantizers- 142 Finite-State Vector Quantizers- 143 Labeled-States and Labeled-Transitions- 144 Encoder/Decoder Design- 145 Next-State Function Design- 146 Design Examples- 147 Problems- 15 Tree and Trellis Encoding- 151 Delayed Decision Encoder- 152 Tree and Trellis Coding- 153 Decoder Design- 154 Predictive Trellis Encoders- 155 Other Design Techniques- 156 Problems- 16 Adaptive Vector Quantization- 161 Introduction- 162 Mean Adaptation- 163 Gain-Adaptive Vector Quantization- 164 Switched Codebook Adaptation- 165 Adaptive Bit Allocation- 166 Address VQ- 167 Progressive Code Vector Updating- 168 Adaptive Codebook Generation- 169 Vector Excitation Coding- 1610 Problems- 17 Variable Rate Vector Quantization- 171 Variable Rate Coding- 172 Variable Dimension VQ- 173 Alternative Approaches to Variable Rate VQ- 174 Pruned Tree-Structured VQ- 175 The Generalized BFOS Algorithm- 176 Pruned Tree-Structured VQ- 177 Entropy Coded VQ- 178 Greedy Tree Growing- 179 Design Examples- 1710 Bit Allocation Revisited- 1711 Design Algorithms- 1712 Problems

7,015 citations

Journal Article
TL;DR: During the past few years several design algorithms have been developed for a variety of vector quantizers and the performance of these codes has been studied for speech waveforms, speech linear predictive parameter vectors, images, and several simulated random processes.
Abstract: A vector quantizer is a system for mapping a sequence of continuous or discrete vectors into a digital sequence suitable for communication over or storage in a digital channel. The goal of such a system is data compression: to reduce the bit rate so as to minimize communication channel capacity or digital storage memory requirements while maintaining the necessary fidelity of the data. The mapping for each vector may or may not have memory in the sense of depending on past actions of the coder, just as in well established scalar techniques such as PCM, which has no memory, and predictive quantization, which does. Even though information theory implies that one can always obtain better performance by coding vectors instead of scalars, scalar quantizers have remained by far the most common data compression system because of their simplicity and good performance when the communication rate is sufficiently large. In addition, relatively few design techniques have existed for vector quantizers. During the past few years several design algorithms have been developed for a variety of vector quantizers and the performance of these codes has been studied for speech waveforms, speech linear predictive parameter vectors, images, and several simulated random processes. It is the purpose of this article to survey some of these design techniques and their applications.

2,743 citations

Book
01 Jan 1977
TL;DR: The fundamental theorems on the asymptotic behavior of eigenvalues, inverses, and products of banded Toeplitz matrices and Toepler matrices with absolutely summable elements are derived in a tutorial manner in the hope of making these results available to engineers lacking either the background or endurance to attack the mathematical literature on the subject.
Abstract: The fundamental theorems on the asymptotic behavior of eigenvalues, inverses, and products of banded Toeplitz matrices and Toeplitz matrices with absolutely summable elements are derived in a tutorial manner. Mathematical elegance and generality are sacrificed for conceptual simplicity and insight in the hope of making these results available to engineers lacking either the background or endurance to attack the mathematical literature on the subject. By limiting the generality of the matrices considered, the essential ideas and results can be conveyed in a more intuitive manner without the mathematical machinery required for the most general cases. As an application the results are applied to the study of the covariance matrices and their factors of linear models of discrete time random processes.

2,404 citations

Book
01 Jan 1990
TL;DR: This book is an updated version of the information theory classic, first published in 1990, with expanded treatment of stationary or sliding-block codes and their relations to traditional block codes and discussion of results from ergodic theory relevant to information theory.
Abstract: This book is an updated version of the information theory classic, first published in 1990. About one-third of the book is devoted to Shannon source and channel coding theorems; the remainder addresses sources, channels, and codes and on information and distortion measures and their properties. New in this edition:Expanded treatment of stationary or sliding-block codes and their relations to traditional block codesExpanded discussion of results from ergodic theory relevant to information theoryExpanded treatment of B-processes -- processes formed by stationary coding memoryless sourcesNew material on trading off information and distortion, including the Marton inequalityNew material on the properties of optimal and asymptotically optimal source codesNew material on the relationships of source coding and rate-constrained simulation or modeling of random processesSignificant material not covered in other information theory texts includes stationary/sliding-block codes, a geometric view of information theory provided by process distance measures, and general Shannon coding theorems for asymptotic mean stationary sources, which may be neither ergodic nor stationary, and d-bar continuous channels.

1,810 citations


Cited by
More filters
Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

Book
01 Jan 1998
TL;DR: An introduction to a Transient World and an Approximation Tour of Wavelet Packet and Local Cosine Bases.
Abstract: Introduction to a Transient World. Fourier Kingdom. Discrete Revolution. Time Meets Frequency. Frames. Wavelet Zoom. Wavelet Bases. Wavelet Packet and Local Cosine Bases. An Approximation Tour. Estimations are Approximations. Transform Coding. Appendix A: Mathematical Complements. Appendix B: Software Toolboxes.

17,693 citations

Book
01 Jan 1983
TL;DR: The methodology used to construct tree structured rules is the focus of a monograph as mentioned in this paper, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.
Abstract: The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.

14,825 citations

Journal ArticleDOI
TL;DR: An overview of pattern clustering methods from a statistical pattern recognition perspective is presented, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners.
Abstract: Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exploratory data analysis. However, clustering is a difficult problem combinatorially, and differences in assumptions and contexts in different communities has made the transfer of useful generic concepts and methodologies slow to occur. This paper presents an overview of pattern clustering methods from a statistical pattern recognition perspective, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners. We present a taxonomy of clustering techniques, and identify cross-cutting themes and recent advances. We also describe some important applications of clustering algorithms such as image segmentation, object recognition, and information retrieval.

14,054 citations

Journal ArticleDOI
TL;DR: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions, chosen in order to best match the signal structures.
Abstract: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. Matching pursuits are general procedures to compute adaptive signal representations. With a dictionary of Gabor functions a matching pursuit defines an adaptive time-frequency transform. They derive a signal energy distribution in the time-frequency plane, which does not include interference terms, unlike Wigner and Cohen class distributions. A matching pursuit isolates the signal structures that are coherent with respect to a given dictionary. An application to pattern extraction from noisy signals is described. They compare a matching pursuit decomposition with a signal expansion over an optimized wavepacket orthonormal basis, selected with the algorithm of Coifman and Wickerhauser see (IEEE Trans. Informat. Theory, vol. 38, Mar. 1992). >

9,380 citations