scispace - formally typeset
Search or ask a question
Author

Robert M. Seepers

Bio: Robert M. Seepers is an academic researcher from Erasmus University Rotterdam. The author has contributed to research in topics: Fault tolerance & Fault coverage. The author has an hindex of 10, co-authored 17 publications receiving 265 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: These findings indicate that cell type-specific abnormalities in cerebellar microcircuitry can translate into pronounced impairments in locomotion performance and adaptation as well as interlimb coordination, highlighting the general role of the Cerebellar cortex in spatiotemporal control of complex multi-joint movements.
Abstract: Synaptic and intrinsic processing in Purkinje cells, interneurons and granule cells of the cerebellar cortex have been shown to underlie various relatively simple, single-joint, reflex types of motor learning, including eyeblink conditioning and adaptation of the vestibulo-ocular reflex. However, to what extent these processes contribute to more complex, multi-joint motor behaviors, such as locomotion performance and adaptation during obstacle crossing, is not well understood. Here, we investigated these functions using the Erasmus Ladder in cell-specific mouse mutant lines that suffer from impaired Purkinje cell output (Pcd), Purkinje cell potentiation (L7-Pp2b), molecular layer interneuron output (L7-Δγ2), and granule cell output (α6-Cacna1a). We found that locomotion performance was severely impaired with small steps and long step times in Pcd and L7-Pp2b mice, whereas it was mildly altered in L7-Δγ2 and not significantly affected in α6-Cacna1a mice. Locomotion adaptation triggered by pairing obstacle appearances with preceding tones at fixed time intervals was impaired in all four mouse lines, in that they all showed inaccurate and inconsistent adaptive walking patterns. Furthermore, all mutants exhibited altered front–hind and left–right interlimb coordination during both performance and adaptation, and inconsistent walking stepping patterns while crossing obstacles. Instead, motivation and avoidance behavior were not compromised in any of the mutants during the Erasmus Ladder task. Our findings indicate that cell type-specific abnormalities in cerebellar microcircuitry can translate into pronounced impairments in locomotion performance and adaptation as well as interlimb coordination, highlighting the general role of the cerebellar cortex in spatiotemporal control of complex multi-joint movements.

110 citations

Journal ArticleDOI
TL;DR: Evaluating the strength of IPI-based security keys in the context of entity authentication demonstrates that authentication using multiple, less-entropic keys may actually increase the key strength by reducing the effects of intersensor variability.
Abstract: In heart-beat-based security, a security key is derived from the time difference between consecutive heart beats (the inter-pulse interval, IPI), which may, subsequently, be used to enable secure communication. While heart-beat-based security holds promise in mobile health (mHealth) applications, there currently exists no work that provides a detailed characterization of the delivered security in a real system. In this paper, we evaluate the strength of IPI-based security keys in the context of entity authentication. We investigate several aspects that should be considered in practice, including subjects with reduced heart-rate variability (HRV), different sensor-sampling frequencies, intersensor variability (i.e., how accurate each entity may measure heart beats) as well as average and worst-case-authentication time. Contrary to the current state of the art, our evaluation demonstrates that authentication using multiple, less-entropic keys may actually increase the key strength by reducing the effects of intersensor variability. Moreover, we find that the maximal key strength of a 60-bit key varies between 29.2 bits and only 5.7 bits, depending on the subject's HRV. To improve security, we introduce the inter-multi-pulse interval (ImPI), a novel method of extracting entropy from the heart by considering the time difference between nonconsecutive heart beats. Given the same authentication time, using the ImPI for key generation increases key strength by up to 3.4 × (+19.2 bits) for subjects with limited HRV, at the cost of an extended key-generation time of 4.8 × (+45 s).

37 citations

Journal ArticleDOI
TL;DR: A new implant system architecture is proposed, where security and main-implant functionality are made completely decoupled by running the tasks onto two separate cores, achieving high security levels at 56% energy savings and at an area overhead of less than 15%.
Abstract: Secure and energy-efficient communication between Implantable Medical Devices (IMDs) and authorized external users is attracting increasing attention these days. However, there currently exists no systematic approach to the problem, while solutions from neighboring fields, such as wireless sensor networks, are not directly transferable due to the peculiarities of the IMD domain. This work describes an original, efficient solution for secure IMD communication. A new implant system architecture is proposed, where security and main-implant functionality are made completely decoupled by running the tasks onto two separate cores. Wireless communication goes through a custom security ASIP, called SISC (Smart-Implant Security Core), which runs an energy-efficient security protocol. The security core is powered by RF-harvested energy until it performs external-reader authentication, providing an elegant defense mechanism against battery Denial-of-Service (DoS) and other, more common attacks. The system has been evaluated based on a realistic case study involving an artificial pancreas implant. When synthesized for a UMC 90nm CMOS ASIC technology, our system architecture achieves defense against unauthorized accesses having zero energy cost, running entity authentication through harvesting only 7.45μJ of RF energy from the requesting entity. In all other successfully authenticated accesses, our architecture achieves secure data exchange without affecting the performance of the main IMD functionality, adding less than 1‰ (1.3mJ) to the daily energy consumption of a typical implant. Compared to a singe-core, secure reference IMD, which would still be more vulnerable to some types of attacks, our secure system on chip (SoC) achieves high security levels at 56p energy savings and at an area overhead of less than 15p.

34 citations

Journal ArticleDOI
TL;DR: RPPG forms a substantial threat to heartbeat-based-security systems that permit trusted devices to obtain their identifiers from contact PPG recordings, and rPPG cannot obtain an accurate representation of an identifier generated from electrical cardiac signals, making the latter invulnerable to state-of-the-art remote attacks.
Abstract: The time interval between consecutive heartbeats (interpulse interval, IPI) has previously been suggested for securing mobile-health solutions. This time interval is known to contain a degree of randomness, permitting the generation of a time- and person-specific identifier. It is commonly assumed that only devices trusted by a person can make physical contact with him/her, and that this physical contact allows each device to generate a similar identifier based on its own cardiac recordings. Under these conditions, the identifiers generated by different trusted devices can facilitate secure authentication. Recently, a wide range of techniques have been proposed for measuring heartbeats remotely, a prominent example of which is remote photoplethysmography (rPPG). These techniques may pose a significant threat to heartbeat-based security, as an adversary may pretend to be a trusted device by generating a similar identifier without physical contact, thus bypassing one of the core security conditions. In this paper, we assess the feasibility of such remote attacks using state-of-the-art rPPG methods. Our evaluation shows that rPPG has similar accuracy as contact PPG and, thus, forms a substantial threat to heartbeat-based-security systems that permit trusted devices to obtain their identifiers from contact PPG recordings. Conversely, rPPG cannot obtain an accurate representation of an identifier generated from electrical cardiac signals, making the latter invulnerable to state-of-the-art remote attacks.

27 citations

Proceedings ArticleDOI
16 May 2016
TL;DR: A new IPI-based key-exchange protocol that employs fuzzy commitment to tolerate the expected disparity between IPIs obtained by an external reader and an IMD, as well as a novel way of tackling heartbeat misdetection through IPI classification.
Abstract: The cardiac interpulse interval (IPI) has recently been proposed to facilitate key exchange for implantable medical devices (IMDs) using a patient's own heartbeats as a source of trust While this form of key exchange holds promise for IMD security, its feasibility is not fully understood due to the simplified approaches found in related works For example, previously proposed protocols have been designed without considering the limited randomness available per IPI, or have overlooked aspects pertinent to a realistic system, such as imperfect heartbeat detection or the energy overheads imposed on an IMD In this paper, we propose a new IPI-based key-exchange protocol and evaluate its use during medical emergencies Our protocol employs fuzzy commitment to tolerate the expected disparity between IPIs obtained by an external reader and an IMD, as well as a novel way of tackling heartbeat misdetection through IPI classification Using our protocol, the expected time for securely exchanging an 80-bit key with high probability (1-10−6) is roughly one minute, while consuming only 88 μJ from an IMD

24 citations


Cited by
More filters
01 Sep 1996
TL;DR: The objectives of the European Community, as laid down in the Treaty, as amended by the Treaty on European Union, include creating an ever closer union among the peoples of Europe, fostering closer relations between the States belonging to the Community, ensuring economic and social progress by common action to eliminate the barriers which divide Europe, encouraging the constant improvement of the living conditions of its peoples, preserving and strengthening peace and liberty and promoting democracy on the basis of the fundamental rights recognized in the constitution and laws of the Member States and in the European Convention for the Protection of Human Rights and Fundamental Freedoms
Abstract: (1) Whereas the objectives of the Community, as laid down in the Treaty, as amended by the Treaty on European Union, include creating an ever closer union among the peoples of Europe, fostering closer relations between the States belonging to the Community, ensuring economic and social progress by common action to eliminate the barriers which divide Europe, encouraging the constant improvement of the living conditions of its peoples, preserving and strengthening peace and liberty and promoting democracy on the basis of the fundamental rights recognized in the constitution and laws of the Member States and in the European Convention for the Protection of Human Rights and Fundamental Freedoms;

792 citations

Journal ArticleDOI
TL;DR: In this paper, the authors study and systematize existing research on CPS security under a unified framework, which consists of three orthogonal coordinates: 1) from the security perspective, they follow the well-known taxonomy of threats, vulnerabilities, attacks and controls; 2) from CPS components, they focus on cyber, physical, and cyber-physical components.
Abstract: With the exponential growth of cyber-physical systems (CPSs), new security challenges have emerged. Various vulnerabilities, threats, attacks, and controls have been introduced for the new generation of CPS. However, there lacks a systematic review of the CPS security literature. In particular, the heterogeneity of CPS components and the diversity of CPS systems have made it difficult to study the problem with one generalized model. In this paper, we study and systematize existing research on CPS security under a unified framework. The framework consists of three orthogonal coordinates: 1) from the security perspective, we follow the well-known taxonomy of threats, vulnerabilities, attacks and controls; 2) from the CPS components perspective, we focus on cyber, physical, and cyber-physical components; and 3) from the CPS systems perspective, we explore general CPS features as well as representative systems (e.g., smart grids, medical CPS, and smart cars). The model can be both abstract to show general interactions of components in a CPS application, and specific to capture any details when needed. By doing so, we aim to build a model that is abstract enough to be applicable to various heterogeneous CPS applications; and to gain a modular view of the tightly coupled CPS components. Such abstract decoupling makes it possible to gain a systematic understanding of CPS security, and to highlight the potential sources of attacks and ways of protection. With this intensive literature review, we attempt to summarize the state-of-the-art on CPS security, provide researchers with a comprehensive list of references, and also encourage the audience to further explore this emerging field.

658 citations

Journal ArticleDOI
TL;DR: This article surveys the main security goals for the next generation of IMDs and analyzes the most relevant protection mechanisms proposed so far, with the battery lifetime being another critical parameter in the design phase.

224 citations

Journal ArticleDOI
TL;DR: The main aspects of CPS and the corresponding applications, technologies, and standards are surveyed and the existing security measures are presented and analyzed while identifying their main limitations.

204 citations

Journal ArticleDOI
03 Oct 2015-eLife
TL;DR: A novel system (LocoMouse) is described for analyzing limb, head, and tail kinematics of freely walking mice to isolate specific impairments in whole-body coordination in mice and provide a quantitative framework for understanding cerebellar contributions to coordinated locomotion.
Abstract: Though it seems simple, walking is a complex activity. The arms, legs, body, and head all need to work together. A part of the brain called the cerebellum helps to coordinate the movements of different body parts allowing both simple and complex tasks to be carried out smoothly. But it is not known exactly how the cerebellum coordinates body movements. Studies of mice have helped shed some light on the coordination of movement. Several mutations that naturally occur in mice can cause them to walk abnormally. These mutations often cause changes in the cerebellum. Neuroscientists studying these mutant mice often use balance beams or other challenging tasks to compare their coordination with typical mice. But studies attempting to measure specific changes in walking movements under natural conditions have yielded conflicting results. Now, Machado, Darmohray et al. have demonstrated that an automated movement-tracking system can capture specific aspects of coordination in freely walking mice. The system, called ‘LocoMouse’, uses high-speed cameras and computers to document and analyze the paw, nose, and tail movements of mice walking through a glass hallway. In the experiments, the system was used to compare typical mice with mice that have a mutation affecting the cerebellum that causes them to walk abnormally. Unexpectedly, Machado, Darmohray et al. found that forward steps of the mutant mice are comparable to the steps of the typical mice, if you account for the fact that the mutant mice are smaller and slower. Instead, however, the mutants were found to have specific difficulties coordinating movement across the body. The movements of the mutant mice's front and hind paws, for example, did not follow the same coordinated pattern as the typical mice. The mutant mice also swung their head and tail in an exaggerated way. Machado, Darmohray et al.'s analysis revealed that these movements likely resulted from a failure of the cerebellum of the mutant mice to predict and compensate for the motion of the rest of the body. Other scientists will now likely use the LocoMouse system to study mouse movements and how the brain controls them.

154 citations