scispace - formally typeset
Search or ask a question
Author

Robert M. Urban

Other affiliations: Rush Medical College
Bio: Robert M. Urban is an academic researcher from Rush University Medical Center. The author has contributed to research in topics: Corrosion & Implant. The author has an hindex of 50, co-authored 106 publications receiving 8224 citations. Previous affiliations of Robert M. Urban include Rush Medical College.


Papers
More filters
Journal ArticleDOI
TL;DR: This review focuses on electrochemical corrosion phenomena in alloys used for orthopaedic implants, evidenced by particulate corrosion and wear products in tissue surrounding the implant, which may ultimately result in a cascade of events leading to periprosthetic bone loss.
Abstract: In situ degradation of metal-alloy implants is undesirable for two reasons: the degradation process may decrease the structural integrity of the implant, and the release of degradation products may elicit an adverse biological reaction in the host Degradation may result from electrochemical dissolution phenomena, wear, or a synergistic combination of the two Electrochemical processes may include generalized corrosion, uniformly affecting the entire surface of the implant, and localized corrosion, affecting either regions of the device that are shielded from the tissue fluids (crevice corrosion) or seemingly random sites on the surface (pitting corrosion) Electrochemical and mechanical processes (for example, stress corrosion cracking, corrosion fatigue, and fretting corrosion) may interact, causing premature structural failure and accelerated release of metal particles and ions The clinical importance of degradation of metal implants is evidenced by particulate corrosion and wear products in tissue surrounding the implant, which may ultimately result in a cascade of events leading to periprosthetic bone loss Furthermore, many authors have reported increased concentrations of local and systemic trace metal in association with metal implants1,4,5,9-11,14,18,25,26,28,29,47,49-55,58,71,72,75-77,87,90,108-110 There also is a low but finite prevalence of corrosion-related fracture of the implant This review focuses on electrochemical corrosion phenomena in alloys used for orthopaedic implants A summary of basic electrochemistry is followed by a discussion of retrieval studies of the response of the implant to the host environment and the response of local tissue to implant corrosion products The systemic implications of the release of metal particles also are presented Finally, future directions in biomaterials research and development …

908 citations

Journal ArticleDOI
TL;DR: Systemic distribution of metallic and polyethylene wear particles was a common finding, both in patients with a previously failed implant and in those with a primary total joint prosthesis.
Abstract: Background: The importance of particles generated by wear and corrosion of joint replacement prostheses has been understood primarily in the context of the local effects of particle-induced periprosthetic osteolysis and aseptic loosening. We studied dissemination of wear particles in patients with total hip and knee replacement to determine the prevalence of and the histopathological response to prosthetic wear debris in the liver, spleen, and abdominal para-aortic lymph nodes. Methods: Postmortem specimens from twenty-nine patients and biopsy specimens from two living patients with a failed replacement were analyzed. Specimens of tissue obtained from the cadavera of fifteen patients who had not had a joint replacement served as controls. The concentration of particles and the associated tissue response were characterized with the use of light microscopy of stained histological sections. Metallic particles were identified by electron microprobe analysis. Polyethylene particles were studied with the use of oil-red-O stain and polarized light microscopy. The composition of polyethylene particles was confirmed in selected cases by Fourier transform infrared spectroscopy and hot-stage thermal analysis. Twenty-one of the patients studied post mortem had had a primary total joint replacement. Eleven of them had had a hip prosthesis for a mean of sixty-nine months (range, forty-three to 171 months), and ten had had a knee replacement for a mean of eighty-four months (range, thirty-one to 179 months). The other eight patients studied post mortem had had a hip replacement in which one or more components had loosened and had been revised. The mean time between the initial arthroplasty and the time of death was 174 months (range, forty-seven to 292 months), and the mean time between the last revision procedure and the time of death was seventy-one months (range, one to 130 months). Results: Metallic wear particles in the liver or spleen were more prevalent in patients who had had a failed hip arthroplasty (seven of eight) than in patients who had had a primary hip (two of eleven) or knee replacement (two of ten). The principal source of wear particles in the majority of these patients involved secondary nonbearing surfaces rather than wear between the two primary bearing surfaces as intended. In one living patient, dissemination of titanium alloy particles from a hip prosthesis with mechanical failure was associated with a visceral granulomatous reaction and hepatosplenomegaly, which required operative and medical treatment. Metallic wear particles were detected in the para-aortic lymph nodes in 68 percent (nineteen) of the twenty-eight patients with an implant from whom lymph nodes were available for study. In 38 percent (eleven) of all twenty-nine patients with an implant who were studied post mortem, metallic particles had been further disseminated to the liver or spleen, where they were usually found within small aggregates of macrophages occurring as infiltrates without apparent pathological importance. Polyethylene particles elicited a similar response. They were identified in the para-aortic lymph nodes of 68 percent (nineteen) of the twenty-eight patients and the liver or spleen of 14 percent (four) of the twenty-nine patients. The majority of the disseminated wear particles were less than one micrometer in size. Currently available methods lack the sensitivity and specificity necessary to detect very low concentrations of submicrometer polyethylene particles and probably underestimated the prevalence of polyethylene wear debris in the liver and spleen. Conclusions: In this study, systemic distribution of metallic and polyethylene wear particles was a common finding, both in patients with a previously failed implant and in those with a primary total joint prosthesis. The prevalence of particles in the liver or spleen was greater after reconstructions with mechanical failure. In the majority of patients, the concentration of wear particles in these organs was relatively low and without apparent pathological importance. However, in one rare case, granulomas formed in the liver, spleen, and abdominal lymph nodes in response to heavy accumulation of wear debris from a hip prosthesis with mechanical failure and compromised hepatic function. Clinical Relevance: These findings underscore the necessity of minimizing the production of particulate debris by joint replacement devices and the need for the surgeon to consider expeditious revision in patients in whom large amounts of particulate debris may be generated. Serum and urine trace-metal analyses may provide early confirmation of failure and aid in the timing of a revision operation in a patient with a symptomatic or failed device.

713 citations

Journal ArticleDOI
TL;DR: Corrosion at the modular neck-body junction in dual-tapered stems with a modular cobalt-chromium-alloy femoral neck can lead to release of metal ions and debris resulting in local soft-tissue destruction and early revision should be considered given the potentially destructive nature of these reactions.
Abstract: Background: Femoral stems with dual-taper modularity were introduced to allow additional options for hip-center restoration independent of femoral fixation in total hip arthroplasty. Despite the increasing availability and use of these femoral stems, concerns exist about potential complications arising from the modular neck-body junction. Methods: This was a multicenter retrospective case series of twelve hips (eleven patients) with adverse local tissue reactions secondary to corrosion at the modular neck-body junction. The cohort included eight women and three men who together had an average age of 60.1 years (range, forty-three to seventy-seven years); all hips were implanted with a titanium-alloy stem and cobalt-chromium-alloy neck. Patients presented with new-onset and increasing pain at a mean of 7.9 months (range, five to thirteen months) following total hip arthroplasty. After serum metal-ion studies and metal artifact reduction sequence (MARS) magnetic resonance imaging (MRI) revealed abnormal results, the patients underwent hip revision at a mean of 15.2 months (range, ten to twenty-three months). Tissue specimens were examined by a single histopathologist, and the retrieved implants were studied with use of light and scanning electron microscopy. Results: Serum metal levels demonstrated greater elevation of cobalt (mean, 6.0 ng/mL) than chromium (mean, 0.6 ng/mL) or titanium (mean, 3.4 ng/mL). MRI with use of MARS demonstrated adverse tissue reactions in eight of nine patients in which it was performed. All hips showed large soft-tissue masses and surrounding tissue damage with visible corrosion at the modular femoral neck-body junction. Available histology demonstrated large areas of tissue necrosis in seven of ten cases, while remaining viable capsular tissue showed a dense lymphocytic infiltrate. Microscopic analysis was consistent with fretting and crevice corrosion at the modular neck-body interface. Conclusions: Corrosion at the modular neck-body junction in dual-tapered stems with a modular cobalt-chromium-alloy femoral neck can lead to release of metal ions and debris resulting in local soft-tissue destruction. Adverse local tissue reaction should be considered as a potential cause for new-onset pain in patients with these components, and early revision should be considered given the potentially destructive nature of these reactions. A workup including serologic studies (erythrocyte sedimentation rate and C-reactive protein), serum metal levels, and MARS MRI can be helpful in establishing this diagnosis. Level of Evidence: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.

348 citations

Journal ArticleDOI
TL;DR: Solid corrosion product was present at the junction of the modular head and neck and as particles within the periprosthetic tissues as early as eight months postoperatively and in several hips, it was also present on the polyethylene bearing surface.
Abstract: Migration of solid corrosion products from the modular head-neck junction of fifteen total hip replacements to the periprosthetic tissues was studied. The devices and tissues were recovered at the time of a revision procedure or at autopsy after a mean of sixty-four months (range, eight to ninety-seven months). The prostheses had a cobalt-chromium-alloy head coupled with a cobalt-chromium-alloy or a titanium-alloy stem. The solid corrosion product was identified by electron microprobe analysis and Fourier transform infrared microprobe spectroscopy as a chromium orthophosphate hydrate-rich material. The product was present at the junction of the modular head and neck and as particles within the periprosthetic tissues as early as eight months postoperatively. In several hips, it was also present on the polyethylene bearing surface. The particles in the tissues ranged in size from less than one to 500 micrometers. They were present within histiocytes or were surrounded by foreign-body giant cells in the pseudocapsule of the hip joint; in the membranes of the femoral bone-implant interface; and at sites of femoral endosteal erosions, with and without loosening of the femoral component.

334 citations

Journal ArticleDOI
TL;DR: Serum concentration and urinary excretion of titanium, aluminum, and vanadium were measured for patients who had a well functioning cementless primary total hip replacement of one of two different designs, for patients Who had a loose total hip replacements that was to be revised, and for control subjects who had no implant.
Abstract: Serum concentration and urinary excretion of titanium, aluminum, and vanadium were measured for patients who had a well functioning cementless primary total hip replacement of one of two different designs, for patients who had a loose total hip replacement that was to be revised, and for control subjects who had no implant. Serum concentrations of titanium were elevated approximately twofold in the patients who had a loose implant, compared with the values for the control subjects. No major differences in terms of urine concentration of titanium, serum concentration of aluminum, or urine concentration of aluminum were observed among any of the groups that were studied. Concentrations of vanadium were uniformly low in all groups.

292 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the influence of alloy chemistry, thermomechanical processing and surface condition on these properties is discussed and various surface modification techniques to achieve superior biocompatibility, higher wear and corrosion resistance.

4,113 citations

Journal ArticleDOI
TL;DR: A review of the properties, biological performance, challenges and future directions of magnesium-based biomaterials can be found in this paper, where the authors explore the properties and challenges of magnesium biomaterial.

3,757 citations

Journal ArticleDOI
TL;DR: The local release of bone stimulating or resorptive drugs in the peri-implant region may also respond to difficult clinical situations with poor bone quality and quantity, which should ultimately enhance the osseointegration process of dental implants for their immediate loading and long-term success.

2,147 citations

Journal ArticleDOI
TL;DR: The extensive polymer science literature as it relates to structure, mechanical properties, and chemical resistance of PAEK biomaterials is synthesized to more readily appreciate why this family of polymers will be inherently strong, inert, and biocompatible.

1,802 citations

Journal ArticleDOI
TL;DR: Fixation by the ingrowth of bone or of fibrous tissue both appeared to be stable, but bone ingrowth gave better clinical results, and the results after five years showed no deterioration with time.
Abstract: Total hip replacement using porous-coated cobalt-chrome femoral implants designed for biological fixation has been evaluated in 307 patients after two years and in 89 patients after five years. Histological study of 11 retrieved specimens showed bone ingrowth in nine and fibrous tissue fixation in two. Fixation by bone ingrowth occurred in 93% of the cases in which a press fit of the stem at the isthmus was achieved, but in only 69% of those without a press fit. The clinical results at two years were excellent. The incidence of pain and limp was much lower when there was either a press fit of the stem or radiographic evidence of bone ingrowth. Factors such as age, sex, and the disease process did not influence the clinical results. Most cases showed only slight resorptive remodelling of the upper femur, but in a few cases with a larger, more rigid stem, more extensive bone loss occurred. The results after five years showed no deterioration with time. Fixation by the ingrowth of bone or of fibrous tissue both appeared to be stable, but bone ingrowth gave better clinical results.

1,642 citations