scispace - formally typeset
Search or ask a question
Author

Robert Muller

Bio: Robert Muller is an academic researcher from Technische Universität Ilmenau. The author has contributed to research in topics: Communication channel & Multipath propagation. The author has an hindex of 14, co-authored 47 publications receiving 571 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A 3-D ray tracing model is used as a propagation-prediction engine to evaluate performance in a number of simple, reference cases and Ray tracing itself is proposed and evaluated as a real-time prediction tool to assist future BF techniques.
Abstract: The use of large-size antenna arrays to implement pencil-beam forming techniques is becoming a key asset to cope with the very high throughput density requirements and high path-loss of future millimeter-wave (mm-wave) gigabit-wireless applications. Suboptimal beamforming (BF) strategies based on search over discrete set of beams (steering vectors) are proposed and implemented in present standards and applications. The potential of fully adaptive advanced BF strategies that will become possible in the future, thanks to the availability of accurate localization and powerful distributed computing, is evaluated in this paper through system simulation. After validation and calibration against mm-wave directional indoor channel measurements, a 3-D ray tracing model is used as a propagation-prediction engine to evaluate performance in a number of simple, reference cases. Ray tracing itself, however, is proposed and evaluated as a real-time prediction tool to assist future BF techniques.

124 citations

Journal ArticleDOI
TL;DR: The main conclusion of this paper is that V2V communication will be possible in high (millimeter-wave) frequencies, even in the case of blockage by other vehicles.
Abstract: Vehicle-to-vehicle (V2V) channels exhibit unique properties due to the highly dynamic environment and low elevation of the antennas at both ends of the link. Of particular importance for the behavior of V2V channels, and consequent reliability of the communication link, is the severity and dynamics of blockage of both the line-of-sight and other multipath components (MPCs). The characteristics of blockage become more important as the carrier frequency increases, and the ability of the signal to penetrate through objects diminishes. To characterize the effects of vehicle blockage, we performed V2V channel measurements in four different frequency bands (6.75, 30, 60, and 73 GHz) in urban and highway scenarios. We analyzed the impact of the blocker size and position on the received power and fast fading parameters, as well as the frequency dependence of these parameters under blockage. Our results show that there is a strong influence of the size of the blocking vehicle on the blockage loss and the angular/delay spread. The position of the blocker relative to the transmitter and receiver also plays an important role. On the other hand, the frequency dependence is quite limited, with the blockage loss increasing slightly and the number of scattered MPCs reducing slightly as frequency increases. The main conclusion of this paper is that V2V communication will be possible in high (millimeter-wave) frequencies, even in the case of blockage by other vehicles.

66 citations

Proceedings ArticleDOI
06 Apr 2014
TL;DR: In this paper, a dual-polarized mm-wave channel sounder architecture is proposed for real-time measurements in 5G mobile networks and motivates the need for polarimetric measurements with experimental data collected at 60 GHz.
Abstract: Owing to the increasing data rates, future 5G mobile networks will need to operate at higher frequencies and bandwidths. To investigate new techniques for those networks, channel sounding is essential for measuring and analysing the multipath propagation in single and multi-user situations under time-variant shadowing environments. This requires a challenging design of the millimeter-wave (mm-wave) channel sounder (CS) - it must provide ultra-wideband (UWB) real-time operation with multiple antennas and a high dynamic range. In addition, polarimetric information is needed to fully characterise the wireless channel, e.g. for cases of polarisation misalignment at the mobile device. This paper presents a novel UWB dual-polarised mm-wave channel sounder architecture for real time measurements in 5G mobile networks and motivates the need for polarimetric measurements with experimental data collected at 60 GHz.

43 citations

Journal ArticleDOI
TL;DR: The main properties of the indoor radio channel at 70 GHz, including angular and temporal dispersion as well as an assessment of the major interaction mechanisms are investigated in this study by means of UWB directional measurements and ray tracing simulations in a reference, small-indoor office environment.
Abstract: Frequency bands above 6 GHz are being considered for future 5G wireless systems because of the larger bandwidth availability and of the smaller wavelength, which can ease the implementation of high-throughput massive MIMO schemes. However, great challenges are around the corner at each implementation level, including the achievement of a thorough multi-dimensional characterization of the mm-wave radio channel, which represents the base for the realization of reliable and high-performance radio interfaces and system architectures. The main properties of the indoor radio channel at 70 GHz, including angular and temporal dispersion as well as an assessment of the major interaction mechanisms, are investigated in this study by means of UWB directional measurements and ray tracing simulations in a reference, small-indoor office environment.

42 citations

Proceedings ArticleDOI
15 Mar 2020
TL;DR: In this article, the authors introduce unique double-directional dual-polarized measurements at 190 GHz in a conference room with the aim of characterizing propagation for channel modelling and beamforming applications.
Abstract: In the present paper we introduce unique double-directional dual-polarized measurements at 190 GHz in a conference room with the aim of characterizing propagation for channel modelling and beam-forming applications. Assisted by ray-tracing, multiple scatterers have been identified, showing a rich multi-path environment. Investigations have shown that polarization diversity increases spatial diversity and a more deterministic modelling approach in polarization is needed to avoid overestimating polarization diversity gains.

37 citations


Cited by
More filters
Journal ArticleDOI
01 Jul 2021
TL;DR: This work rigorously discusses the fundamental changes required in the core networks of the future, such as the redesign or significant reduction of the transport architecture that serves as a major source of latency for time-sensitive applications.
Abstract: Mobile communications have been undergoing a generational change every ten years or so. However, the time difference between the so-called “G’s” is also decreasing. While fifth-generation (5G) systems are becoming a commercial reality, there is already significant interest in systems beyond 5G, which we refer to as the sixth generation (6G) of wireless systems. In contrast to the already published papers on the topic, we take a top-down approach to 6G. More precisely, we present a holistic discussion of 6G systems beginning with lifestyle and societal changes driving the need for next-generation networks. This is followed by a discussion into the technical requirements needed to enable 6G applications, based on which we dissect key challenges and possibilities for practically realizable system solutions across all layers of the Open Systems Interconnection stack (i.e., from applications to the physical layer). Since many of the 6G applications will need access to an order-of-magnitude more spectrum, utilization of frequencies between 100 GHz and 1 THz becomes of paramount importance. As such, the 6G ecosystem will feature a diverse range of frequency bands, ranging from below 6 GHz up to 1 THz. We comprehensively characterize the limitations that must be overcome to realize working systems in these bands and provide a unique perspective on the physical and higher layer challenges relating to the design of next-generation core networks, new modulation and coding methods, novel multiple-access techniques, antenna arrays, wave propagation, radio frequency transceiver design, and real-time signal processing. We rigorously discuss the fundamental changes required in the core networks of the future, such as the redesign or significant reduction of the transport architecture that serves as a major source of latency for time-sensitive applications. This is in sharp contrast to the present hierarchical network architectures that are not suitable to realize many of the anticipated 6G services. While evaluating the strengths and weaknesses of key candidate 6G technologies, we differentiate what may be practically achievable over the next decade, relative to what is possible in theory. Keeping this in mind, we present concrete research challenges for each of the discussed system aspects, providing inspiration for what follows.

529 citations

Journal ArticleDOI
TL;DR: The requirements of the 5G channel modeling are summarized, an extensive review of the recent channel measurements and models are provided, and future research directions forChannel measurements and modeling are provided.
Abstract: The fifth generation (5G) mobile communication systems will be in use around 2020. The aim of 5G systems is to provide anywhere and anytime connectivity for anyone and anything. Several new technologies are being researched for 5G systems, such as massive multiple-input multiple-output communications, vehicle-to-vehicle communications, high-speed train communications, and millimeter wave communications. Each of these technologies introduces new propagation properties and sets specific requirements on 5G channel modeling. Considering the fact that channel models are indispensable for system design and performance evaluation, accurate and efficient channel models covering various 5G technologies and scenarios are urgently needed. This paper first summarizes the requirements of the 5G channel modeling, and then provides an extensive review of the recent channel measurements and models. Finally, future research directions for channel measurements and modeling are provided.

407 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an in-depth tutorial of the 3GPP Release 16 5G NR V2X standard for vehicular communications, with a particular focus on the sidelink.
Abstract: The Third Generation Partnership Project (3GPP) has recently published its Release 16 that includes the first Vehicle-to-Everything (V2X) standard based on the 5G New Radio (NR) air interface 5G NR V2X introduces advanced functionalities on top of the 5G NR air interface to support connected and automated driving use cases with stringent requirements This article presents an in-depth tutorial of the 3GPP Release 16 5G NR V2X standard for V2X communications, with a particular focus on the sidelink, since it is the most significant part of 5G NR V2X The main part of the paper is an in-depth treatment of the key aspects of 5G NR V2X: the physical layer, the resource allocation, the quality of service management, the enhancements introduced to the Uu interface and the mobility management for V2N (Vehicle to Network) communications, as well as the co-existence mechanisms between 5G NR V2X and LTE V2X We also review the use cases, the system architecture, and describe the evaluation methodology and simulation assumptions for 5G NR V2X Finally, we provide an outlook on possible 5G NR V2X enhancements, including those identified within Release 17

350 citations

Journal ArticleDOI
TL;DR: A set of mmWave radio propagation parameters is presented based on both the measurement results and ray-tracing, and the corresponding channel models following the 3GPP spatial channel model (SCM) methodology are also described.
Abstract: This paper presents 28 GHz wideband propagation channel characteristics for millimeter wave (mmWave) urban cellular communication systems. The mmWave spectrum is considered as a key-enabling feature of 5G cellular communication systems to provide an enormous capacity increment; however, mmWave channel models are lacking today. The paper compares measurements conducted with a spherical scanning 28 GHz channel sounder system in the urban street-canyon environments of Daejeon, Korea and NYU campus, Manhattan, with ray-tracing simulations made for the same areas. Since such scanning measurements are very costly and time-intensive, only a relatively small number of channel samples can be obtained. The measurements are thus used to quantify the accuracy of a ray-tracer; the ray-tracer is subsequently used to obtain a large number of channel samples to fill gaps in the measurements. A set of mmWave radio propagation parameters is presented based on both the measurement results and ray-tracing, and the corresponding channel models following the 3GPP spatial channel model (SCM) methodology are also described.

313 citations

Journal ArticleDOI
TL;DR: This tutorial will be especially useful for researchers who work on RT algorithms development and channel modeling to meet the evaluation requirements of 5G and beyond technologies.
Abstract: The application scenarios and requirements are more diverse in the fifth-generation (5G) era than before. In order to successfully support the system design and deployment, accurate channel modeling is important. Ray-tracing (RT) based deterministic modeling approach is accurate with detailed angular information and is a suitable candidate for predicting time-varying channel and multiple-input multiple-output (MIMO) channel for various frequency bands. However, the computational complexity and the utility of RT are the main concerns of users. Aiming at 5G and beyond wireless communications, this paper presents a comprehensive tutorial on the design of RT and the applications. The role of RT and the state-of-the-art RT techniques are reviewed. The features of academic and commercial RT based simulators are summarized and compared. The requirements, challenges, and developing trends of RT to enable the visions are discussed. The practices of the design of high-performance RT simulation platform for 5G and beyond communications are introduced, with the publicly available high-performance cloud-based RT simulation platform as the main reference. The hardware structure, networking, workflow, data flow and fundamental functions of a flexible high-performance RT platform are discussed. The applications of high-performance RT are presented based on two 5G scenarios, i.e., a 3.5 GHz Beijing vehicle-to-infrastructure scenario and a 28 GHz Manhattan outdoor scenario. The questions on how to calibrate and validate RT based on measurements, how to apply RT for mobile communications in moving scenarios, and how to evaluate MIMO beamforming technologies are answered. This tutorial will be especially useful for researchers who work on RT algorithms development and channel modeling to meet the evaluation requirements of 5G and beyond technologies.

237 citations