scispace - formally typeset
Search or ask a question
Author

Robert S. Wilson

Other affiliations: Rush University, Boston Children's Hospital, Stanford University  ...read more
Bio: Robert S. Wilson is an academic researcher from Rush University Medical Center. The author has contributed to research in topics: Dementia & Cognitive decline. The author has an hindex of 122, co-authored 512 publications receiving 52415 citations. Previous affiliations of Robert S. Wilson include Rush University & Boston Children's Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: Brain insulin resistance appears to be an early and common feature of AD, a phenomenon accompanied by IGF-1 resistance and closely associated with IRS-1 dysfunction potentially triggered by Aβ oligomers and yet promoting cognitive decline independent of classic AD pathology.
Abstract: While a potential causal factor in Alzheimer's disease (AD), brain insulin resistance has not been demonstrated directly in that disorder. We provide such a demonstration here by showing that the hippocampal formation (HF) and, to a lesser degree, the cerebellar cortex in AD cases without diabetes exhibit markedly reduced responses to insulin signaling in the IR→IRS-1→PI3K signaling pathway with greatly reduced responses to IGF-1 in the IGF-1R→IRS-2→PI3K signaling pathway. Reduced insulin responses were maximal at the level of IRS-1 and were consistently associated with basal elevations in IRS-1 phosphorylated at serine 616 (IRS-1 pS⁶¹⁶) and IRS-1 pS⁶³⁶/⁶³⁹. In the HF, these candidate biomarkers of brain insulin resistance increased commonly and progressively from normal cases to mild cognitively impaired cases to AD cases regardless of diabetes or APOE e4 status. Levels of IRS-1 pS⁶¹⁶ and IRS-1 pS⁶³⁶/⁶³⁹ and their activated kinases correlated positively with those of oligomeric Aβ plaques and were negatively associated with episodic and working memory, even after adjusting for Aβ plaques, neurofibrillary tangles, and APOE e4. Brain insulin resistance thus appears to be an early and common feature of AD, a phenomenon accompanied by IGF-1 resistance and closely associated with IRS-1 dysfunction potentially triggered by Aβ oligomers and yet promoting cognitive decline independent of classic AD pathology.

1,426 citations

Journal ArticleDOI
13 Feb 2002-JAMA
TL;DR: Results suggest that frequent participation in cognitively stimulating activities is associated with reduced risk of AD.
Abstract: ContextFrequent participation in cognitively stimulating activities has been hypothesized to reduce risk of Alzheimer disease (AD), but prospective data regarding an association are lacking.ObjectiveTo test the hypothesis that frequent participation in cognitive activities is associated with a reduced risk of AD.DesignLongitudinal cohort study with baseline evaluations performed between January 1994 and July 2001 and mean follow-up of 4.5 years.Participants and SettingA total of 801 older Catholic nuns, priests, and brothers without dementia at enrollment, recruited from 40 groups across the United States. At baseline, they rated frequency of participation in common cognitive activities (eg, reading a newspaper), from which a previously validated composite measure of cognitive activity frequency was derived.Main Outcome MeasuresClinical diagnosis of AD by a board-certified neurologist using National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer's Disease and Related Disorders Association criteria and change in global and specific measures of cognitive function, compared by cognitive activity score at baseline.ResultsBaseline scores on the composite measure of cognitive activity ranged from 1.57 to 4.71 (mean, 3.57; SD, 0.55), with higher scores indicating more frequent activity. During an average of 4.5 years of follow-up, 111 persons developed AD. In a proportional hazards model that controlled for age, sex, and education, a 1-point increase in cognitive activity score was associated with a 33% reduction in risk of AD (hazard ratio, 0.67; 95% confidence interval, 0.49-0.92). Results were comparable when persons with memory impairment at baseline were excluded and when terms for the apolipoprotein E ∊4 allele and other medical conditions were added. In random-effects models that controlled for age, sex, education, and baseline level of cognitive function, a 1-point increase in cognitive activity was associated with reduced decline in global cognition (by 47%), working memory (by 60%), and perceptual speed (by 30%).ConclusionThese results suggest that frequent participation in cognitively stimulating activities is associated with reduced risk of AD.

1,186 citations

Journal ArticleDOI
TL;DR: The available evidence suggests that activities can postpone decline, attenuate decline, or provide prosthetic benefit in the face of normative cognitive decline, while at the same time indicating that late-life cognitive changes can result in curtailment of activities.
Abstract: In this monograph, we ask whether various kinds of intellectual, physical, and social activities produce cognitive enrichment effects-that is, whether they improve cognitive performance at different points of the adult life span, with a particular emphasis on old age. We begin with a theoretical framework that emphasizes the potential of behavior to influence levels of cognitive functioning. According to this framework, the undeniable presence of age-related decline in cognition does not invalidate the view that behavior can enhance cognitive functioning. Instead, the course of normal aging shapes a zone of possible functioning, which reflects person-specific endowments and age-related constraints. Individuals influence whether they function in the higher or lower ranges of this zone by engaging in or refraining from beneficial intellectual, physical, and social activities. From this point of view, the potential for positive change, or plasticity, is maintained in adult cognition. It is an argument that is supported by newer research in neuroscience showing neural plasticity in various aspects of central nervous system functioning, neurochemistry, and architecture. This view of human potential contrasts with static conceptions of cognition in old age, according to which decline in abilities is fixed and individuals cannot slow its course. Furthermore, any understanding of cognition as it occurs in everyday life must make a distinction between basic cognitive mechanisms and skills (such as working-memory capacity) and the functional use of cognition to achieve goals in specific situations. In practice, knowledge and expertise are critical for effective functioning, and the available evidence suggests that older adults effectively employ specific knowledge and expertise and can gain new knowledge when it is required. We conclude that, on balance, the available evidence favors the hypothesis that maintaining an intellectually engaged and physically active lifestyle promotes successful cognitive aging. First, cognitive-training studies have demonstrated that older adults can improve cognitive functioning when provided with intensive training in strategies that promote thinking and remembering. The early training literature suggested little transfer of function from specifically trained skills to new cognitive tasks; learning was highly specific to the cognitive processes targeted by training. Recently, however, a new generation of studies suggests that providing structured experience in situations demanding executive coordination of skills-such as complex video games, task-switching paradigms, and divided attention tasks-train strategic control over cognition that does show transfer to different task environments. These studies suggest that there is considerable reserve potential in older adults' cognition that can be enhanced through training. Second, a considerable number of studies indicate that maintaining a lifestyle that is intellectually stimulating predicts better maintenance of cognitive skills and is associated with a reduced risk of developing Alzheimer's disease in late life. Our review focuses on longitudinal evidence of a connection between an active lifestyle and enhanced cognition, because such evidence admits fewer rival explanations of observed effects (or lack of effects) than does cross-sectional evidence. The longitudinal evidence consistently shows that engaging in intellectually stimulating activities is associated with better cognitive functioning at later points in time. Other studies show that meaningful social engagement is also predictive of better maintenance of cognitive functioning in old age. These longitudinal findings are also open to important rival explanations, but overall, the available evidence suggests that activities can postpone decline, attenuate decline, or provide prosthetic benefit in the face of normative cognitive decline, while at the same time indicating that late-life cognitive changes can result in curtailment of activities. Given the complexity of the dynamic reciprocal relationships between stimulating activities and cognitive function in old age, additional research will be needed to address the extent to which observed effects validate a causal influence of an intellectually engaged lifestyle on cognition. Nevertheless, the hypothesis that an active lifestyle that requires cognitive effort has long-term benefits for older adults' cognition is at least consistent with the available data. Furthermore, new intervention research that involves multimodal interventions focusing on goal-directed action requiring cognition (such as reading to children) and social interaction will help to address whether an active lifestyle enhances cognitive function. Third, there is a parallel literature suggesting that physical activity, and aerobic exercise in particular, enhances older adults' cognitive function. Unlike the literature on an active lifestyle, there is already an impressive array of work with humans and animal populations showing that exercise interventions have substantial benefits for cognitive function, particularly for aspects of fluid intelligence and executive function. Recent neuroscience research on this topic indicates that exercise has substantial effects on brain morphology and function, representing a plausible brain substrate for the observed effects of aerobic exercise and other activities on cognition. Our review identifies a number of areas where additional research is needed to address critical questions. For example, there is considerable epidemiological evidence that stress and chronic psychological distress are negatively associated with changes in cognition. In contrast, less is known about how positive attributes, such as self-efficacy, a sense of control, and a sense of meaning in life, might contribute to preservation of cognitive function in old age. It is well known that certain personality characteristics such as conscientiousness predict adherence to an exercise regimen, but we do not know whether these attributes are also relevant to predicting maintenance of cognitive function or effective compensation for cognitive decline when it occurs. Likewise, more information is needed on the factors that encourage maintenance of an active lifestyle in old age in the face of elevated risk for physiological decline, mechanical wear and tear on the body, and incidence of diseases with disabling consequences, and whether efforts to maintain an active lifestyle are associated with successful aging, both in terms of cognitive function and psychological and emotional well-being. We also discuss briefly some interesting issues for society and public policy regarding cognitive-enrichment effects. For example, should efforts to enhance cognitive function be included as part of a general prevention model for enhancing health and vitality in old age? We also comment on the recent trend of business marketing interventions claimed to build brain power and prevent age-related cognitive decline, and the desirability of direct research evidence to back claims of effectiveness for specific products.

1,179 citations

Journal ArticleDOI
TL;DR: Diabetes mellitus may be associated with an increased risk of developing AD and may affect cognitive systems differentially, and this study evaluated the association of diabetes mellitus with risk of AD and change in different cognitive systems.
Abstract: Background Few prospective studies have assessed diabetes mellitus as a risk factor for incident Alzheimer disease (AD) and decline in cognitive function. Objective To evaluate the association of diabetes mellitus with risk of AD and change in different cognitive systems. Design Longitudinal cohort study. Participants For up to 9 years, 824 older (those >55 years) Catholic nuns, priests, and brothers underwent detailed annual clinical evaluations. Main Outcome Measures Clinically diagnosed AD and change in global and specific measures of cognitive function. Results Diabetes mellitus was present in 127 (15.4%) of the participants. During a mean of 5.5 years of observation, 151 persons developed AD. In a proportional hazards model adjusted for age, sex, and educational level, those with diabetes mellitus had a 65% increase in the risk of developing AD compared with those without diabetes mellitus (hazard ratio, 1.65; 95% confidence interval, 1.10-2.47). In random effects models, diabetes mellitus was associated with lower levels of global cognition, episodic memory, semantic memory, working memory, and visuospatial ability at baseline. Diabetes mellitus was associated with a 44% greater rate of decline in perceptual speed ( P = .02), but not in other cognitive systems. Conclusions Diabetes mellitus may be associated with an increased risk of developing AD and may affect cognitive systems differentially.

1,142 citations

Journal ArticleDOI
TL;DR: Alzheimer disease pathology can be found in the brains of older persons without dementia or mild cognitive impairment and is related to subtle changes in episodic memory.
Abstract: Objective: To examine the relation of National Institute on Aging–Reagan (NIA-Reagan) neuropathologic criteria of Alzheimer disease (AD) to level of cognitive function in persons without dementia or mild cognitive impairment (MCI) Methods: More than 2,000 persons without dementia participating in the Religious Orders Study or the Memory and Aging Project agreed to annual detailed clinical evaluation and brain donation The studies had 19 neuropsychological performance tests in common that assessed five cognitive domains, including episodic memory, semantic memory, working memory, perceptual speed, and visuospatial ability A total of 134 persons without cognitive impairment died and underwent brain autopsy and postmortem assessment for AD pathology using NIA-Reagan neuropathologic criteria for AD, cerebral infarctions, and Lewy bodies Linear regression was used to examine the relation of AD pathology to level of cognitive function proximate to death Results: Two (15%) persons met NIA-Reagan criteria for high likelihood AD, and 48 (358%) met criteria for intermediate likelihood; 29 (216%) had cerebral infarctions, and 18 (134%) had Lewy bodies The mean Mini-Mental State Examination score proximate to death was 282 for those meeting high or intermediate likelihood AD by NIA-Reagan criteria and 284 for those not meeting criteria In linear regression models adjusted for age, sex, and education, persons meeting criteria for intermediate or high likelihood AD scored about a quarter standard unit lower on tests of episodic memory ( p = 001) There were no significant differences in any other cognitive domain Conclusions: Alzheimer disease pathology can be found in the brains of older persons without dementia or mild cognitive impairment and is related to subtle changes in episodic memory

1,103 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available.
Abstract: The National Institute on Aging and the Alzheimer's Association charged a workgroup with the task of revising the 1984 criteria for Alzheimer's disease (AD) dementia. The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available. We present criteria for all-cause dementia and for AD dementia. We retained the general framework of probable AD dementia from the 1984 criteria. On the basis of the past 27 years of experience, we made several changes in the clinical criteria for the diagnosis. We also retained the term possible AD dementia, but redefined it in a manner more focused than before. Biomarker evidence was also integrated into the diagnostic formulations for probable and possible AD dementia for use in research settings. The core clinical criteria for AD dementia will continue to be the cornerstone of the diagnosis in clinical practice, but biomarker evidence is expected to enhance the pathophysiological specificity of the diagnosis of AD dementia. Much work lies ahead for validating the biomarker diagnosis of AD dementia.

13,710 citations

Journal ArticleDOI
31 Jan 2002-Neuron
TL;DR: In this paper, a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set is presented.

7,120 citations

Journal ArticleDOI
Ronald C. Petersen1
TL;DR: It is suggested that the diagnosis of mild cognitive impairment can be made in a fashion similar to the clinical diagnoses of dementia and AD, and an algorithm is presented to assist the clinician in identifying subjects and subclassifying them into the various types of MCI.
Abstract: The concept of cognitive impairment intervening between normal ageing and very early dementia has been in the literature for many years. Recently, the construct of mild cognitive impairment (MCI) has been proposed to designate an early, but abnormal, state of cognitive impairment. MCI has generated a great deal of research from both clinical and research perspectives. Numerous epidemiological studies have documented the accelerated rate of progression to dementia and Alzheimer's disease (AD) in MCI subjects and certain predictor variables appear valid. However, there has been controversy regarding the precise definition of the concept and its implementation in various clinical settings. Clinical subtypes of MCI have been proposed to broaden the concept and include prodromal forms of a variety of dementias. It is suggested that the diagnosis of MCI can be made in a fashion similar to the clinical diagnoses of dementia and AD. An algorithm is presented to assist the clinician in identifying subjects and subclassifying them into the various types of MCI. By refining the criteria for MCI, clinical trials can be designed with appropriate inclusion and exclusion restrictions to allow for the investigation of therapeutics tailored for specific targets and populations.

6,382 citations