scispace - formally typeset
Search or ask a question
Author

Robert Strome

Bio: Robert Strome is an academic researcher from University of Toronto. The author has contributed to research in topics: Presenilin & Wild type. The author has an hindex of 10, co-authored 12 publications receiving 4275 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The data demonstrate that the preseniiin mutations cause a dominant gain of function and may induce AD by enhancing Aβ42 production, thus promoting cerebral β-amyloidosis.
Abstract: The mechanism by which mutations in the presenilin (PS) genes cause the most aggressive form of early-onset Alzheimer's disease (AD) is unknown, but fibroblasts from mutation carriers secrete increased levels of the amyloidogenic A beta 42 peptide, the main component of AD plaques. We established transfected cell and transgenic mouse models that coexpress human PS and amyloid beta-protein precursor (APP) genes and analyzed quantitatively the effects of PS expression on APP processing. In both models, expression of wild-type PS genes did not alter APP levels, alpha- and beta-secretase activity and A beta production. In the transfected cells, PS1 and PS2 mutations caused a highly significant increase in A beta 42 secretion in all mutant clones. Likewise, mutant but not wildtype PS1 transgenic mice showed significant overproduction of A beta 42 in the brain, and this effect was detectable as early as 2-4 months of age. Different PS mutations had differential effects on A beta generation. The extent of A beta 42 increase did not correlate with presenilin expression levels. Our data demonstrate that the presenilin mutations cause a dominant gain of function and may induce AD by enhancing A beta 42 production, thus promoting cerebral beta-amyloidosis.

1,361 citations

Journal ArticleDOI
18 Dec 1997-Nature
TL;DR: Findings indicate that PrPC can exist in a Cu-metalloprotein form in vivo, and that its amino terminus contains the octapeptide PHGGGWGQ, which is among the best-preserved regions of mammalian PrPC.
Abstract: The normal cellular form of prion protein (PrPC) is a precursor to the pathogenic protease-resistant forms (PrPSc) believed to cause scrapie, bovine spongiform encephalopathy (BSE) and Creutzfeldt-Jakob disease. Its amino terminus contains the octapeptide PHGGGWGQ, which is repeated four times and is among the best-preserved regions of mammalian PrPC. Here we show that the amino-terminal domain of PrPC exhibits five to six sites that bind copper (Cu(II)) presented as a glycine chelate. At neutral pH, binding occurs with positive cooperativity, with binding affinity compatible with estimates for extracellular, labile copper. Two lines of independently derived PrPC gene-ablated (Prnp0/0) mice exhibit severe reductions in the copper content of membrane-enriched brain extracts and similar reductions in synaptosomal and endosome-enriched subcellular fractions. Prnp0/0 mice also have altered cellular phenotypes, including a reduction in the activity of copper/zinc superoxide dismutase and altered electrophysiological responses in the presence of excess copper. These findings indicate that PrPC can exist in a Cu-metalloprotein form in vivo.

1,292 citations

Journal ArticleDOI
TL;DR: High level production of the pathogenic Aβ42 form of Aβ peptide was associated with an early impairment in TgCRND8 mice in acquisition and learning reversal in the reference memory version of the Morris water maze, present by 3 months of age.

986 citations

Journal ArticleDOI
TL;DR: Dpl is the first PrP-like protein to be described in mammals, and since Dpl seems to cause neurodegeneration similar to PrP, the linked expression of the Prnp and Prnd genes may play a previously unrecognized role in the pathogenesis of prion diseases or other illnesses.

537 citations

Journal ArticleDOI
TL;DR: The lack of progressive spatial learning impairment in mice expressing the mutated human PS1 transgene in the WM does not preclude impairments in other cognitive tasks but suggests that full phenotypic expression of mutant PS1 alleles may require co-expression of human versions of other AD-associated genes.

97 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Evidence that the presenilin proteins, mutations in which cause the most aggressive form of inherited AD, lead to altered intramembranous cleavage of the beta-amyloid precursor protein by the protease called gamma-secretase has spurred progress toward novel therapeutics and provided discrete biochemical targets for drug screening and development.
Abstract: Rapid progress in deciphering the biological mechanism of Alzheimer's disease (AD) has arisen from the application of molecular and cell biology to this complex disorder of the limbic and association cortices. In turn, new insights into fundamental aspects of protein biology have resulted from research on the disease. This beneficial interplay between basic and applied cell biology is well illustrated by advances in understanding the genotype-to-phenotype relationships of familial Alzheimer's disease. All four genes definitively linked to inherited forms of the disease to date have been shown to increase the production and/or deposition of amyloid β-protein in the brain. In particular, evidence that the presenilin proteins, mutations in which cause the most aggressive form of inherited AD, lead to altered intramembranous cleavage of the β-amyloid precursor protein by the protease called γ-secretase has spurred progress toward novel therapeutics. The finding that presenilin itself may be the long-sought γ-...

5,890 citations

Journal ArticleDOI
02 May 1997-Cell
TL;DR: This research was supported by grants from the National Institutes of Health (HL20948) and the Perot Family Foundation.

3,626 citations

Journal ArticleDOI
08 Jul 1999-Nature
TL;DR: It is reported that immunization of the young animals essentially prevented the development of β-amyloid-plaque formation, neuritic dystrophy and astrogliosis, and treatment of the older animals markedly reduced the extent and progression of these AD-like neuropathologies.
Abstract: Amyloid-beta peptide (Abeta) seems to have a central role in the neuropathology of Alzheimer's disease (AD). Familial forms of the disease have been linked to mutations in the amyloid precursor protein (APP) and the presenilin genes. Disease-linked mutations in these genes result in increased production of the 42-amino-acid form of the peptide (Abeta42), which is the predominant form found in the amyloid plaques of Alzheimer's disease. The PDAPP transgenic mouse, which overexpresses mutant human APP (in which the amino acid at position 717 is phenylalanine instead of the normal valine), progressively develops many of the neuropathological hallmarks of Alzheimer's disease in an age- and brain-region-dependent manner. In the present study, transgenic animals were immunized with Abeta42, either before the onset of AD-type neuropathologies (at 6 weeks of age) or at an older age (11 months), when amyloid-beta deposition and several of the subsequent neuropathological changes were well established. We report that immunization of the young animals essentially prevented the development of beta-amyloid-plaque formation, neuritic dystrophy and astrogliosis. Treatment of the older animals also markedly reduced the extent and progression of these AD-like neuropathologies. Our results raise the possibility that immunization with amyloid-beta may be effective in preventing and treating Alzheimer's disease.

3,362 citations

Journal ArticleDOI
TL;DR: 5XFAD mice rapidly recapitulate major features of AD amyloid pathology and may be useful models of intraneuronal Aβ42-induced neurodegeneration and amyloids plaque formation.
Abstract: Mutations in the genes for amyloid precursor protein (APP) and presenilins (PS1, PS2) increase production of β-amyloid 42 (Aβ42) and cause familial Alzheimer's disease (FAD). Transgenic mice that express FAD mutant APP and PS1 overproduce Aβ42 and exhibit amyloid plaque pathology similar to that found in AD, but most transgenic models develop plaques slowly. To accelerate plaque development and investigate the effects of very high cerebral Aβ42 levels, we generated APP/PS1 double transgenic mice that coexpress five FAD mutations (5XFAD mice) and additively increase Aβ42 production. 5XFAD mice generate Aβ42 almost exclusively and rapidly accumulate massive cerebral Aβ42 levels. Amyloid deposition (and gliosis) begins at 2 months and reaches a very large burden, especially in subiculum and deep cortical layers. Intraneuronal Aβ42 accumulates in 5XFAD brain starting at 1.5 months of age (before plaques form), is aggregated (as determined by thioflavin S staining), and occurs within neuron soma and neurites. Some amyloid deposits originate within morphologically abnormal neuron soma that contain intraneuronal Aβ. Synaptic markers synaptophysin, syntaxin, and postsynaptic density-95 decrease with age in 5XFAD brain, and large pyramidal neurons in cortical layer 5 and subiculum are lost. In addition, levels of the activation subunit of cyclin-dependent kinase 5, p25, are elevated significantly at 9 months in 5XFAD brain, although an upward trend is observed by 3 months of age, before significant neurodegeneration or neuron loss. Finally, 5XFAD mice have impaired memory in the Y-maze. Thus, 5XFAD mice rapidly recapitulate major features of AD amyloid pathology and may be useful models of intraneuronal Aβ42-induced neurodegeneration and amyloid plaque formation.

2,471 citations

Journal ArticleDOI
TL;DR: Heterozygous rare variants in TREM2 are associated with a significant increase in the risk of Alzheimer's disease.
Abstract: BACKGROUND: Homozygous loss-of-function mutations in TREM2, encoding the triggering receptor expressed on myeloid cells 2 protein, have previously been associated with an autosomal recessive form of early-onset dementia. METHODS: We used genome, exome, and Sanger sequencing to analyze the genetic variability in TREM2 in a series of 1092 patients with Alzheimer's disease and 1107 controls (the discovery set). We then performed a meta-analysis on imputed data for the TREM2 variant rs75932628 (predicted to cause a R47H substitution) from three genomewide association studies of Alzheimer's disease and tested for the association of the variant with disease. We genotyped the R47H variant in an additional 1887 cases and 4061 controls. We then assayed the expression of TREM2 across different regions of the human brain and identified genes that are differentially expressed in a mouse model of Alzheimer's disease and in control mice. RESULTS: We found significantly more variants in exon 2 of TREM2 in patients with Alzheimer's disease than in controls in the discovery set (P=0.02). There were 22 variant alleles in 1092 patients with Alzheimer's disease and 5 variant alleles in 1107 controls (P<0.001). The most commonly associated variant, rs75932628 (encoding R47H), showed highly significant association with Alzheimer's disease (P<0.001). Meta-analysis of rs75932628 genotypes imputed from genomewide association studies confirmed this association (P=0.002), as did direct genotyping of an additional series of 1887 patients with Alzheimer's disease and 4061 controls (P<0.001). Trem2 expression differed between control mice and a mouse model of Alzheimer's disease. CONCLUSIONS: Heterozygous rare variants in TREM2 are associated with a significant increase in the risk of Alzheimer's disease. (Funded by Alzheimer's Research UK and others.).

2,333 citations