scispace - formally typeset
Search or ask a question
Author

Robert Tibshirani

Bio: Robert Tibshirani is an academic researcher from Stanford University. The author has contributed to research in topics: Lasso (statistics) & Elastic net regularization. The author has an hindex of 147, co-authored 593 publications receiving 326580 citations. Previous affiliations of Robert Tibshirani include University of Toronto & University of California.


Papers
More filters
Journal ArticleDOI
14 Oct 2020-Nature
TL;DR: TheMAQC Society Board of Directors*, Levi Waldron, Bo Wang, Chris McIntosh, Anna Goldenberg, Anshul Kundaje, Casey S. Greene, Tamara Broderick, Michael M. Hoffman, Jeffrey T. Leek, Keegan Korthauer, Wolfgang Huber, Joelle Pineau, Robert Tibshirani, Trevor Hastie, John P. Ioannidis, John Quackenbush & Hugo J. W. Aerts
Abstract: Benjamin Haibe-Kains1,2,3,4,5 ✉, George Alexandru Adam, Ahmed Hosny, Farnoosh Khodakarami, Massive Analysis Quality Control (MAQC) Society Board of Directors*, Levi Waldron, Bo Wang, Chris McIntosh, Anna Goldenberg, Anshul Kundaje, Casey S. Greene, Tamara Broderick, Michael M. Hoffman, Jeffrey T. Leek, Keegan Korthauer, Wolfgang Huber, Alvis Brazma, Joelle Pineau, Robert Tibshirani, Trevor Hastie, John P. A. Ioannidis, John Quackenbush & Hugo J. W. L. Aerts

179 citations

Journal ArticleDOI
TL;DR: By averaging the genes within the clusters obtained from hierarchical clustering, supergenes are defined and used to fit regression models, thereby attaining concise interpretation and accuracy in regression of DNA microarray data.
Abstract: SUMMARY Although averaging is a simple technique, it plays an important role in reducing variance. We use this essential property of averaging in regression of the DNA microarray data, which poses the challenge of having far more features than samples. In this paper, we introduce a two-step procedure that combines (1) hierarchical clustering and (2) Lasso. By averaging the genes within the clusters obtained from hierarchical clustering, we define supergenes and use them to fit regression models, thereby attaining concise interpretation and accuracy. Our methods are supported with theoretical justifications and demonstrated on simulated and real data sets.

179 citations

Journal ArticleDOI
08 Jun 2018-Science
TL;DR: In pilot studies of pregnant women, RNA-based tests of maternal blood predicted delivery date and risk of early childbirth and hold promise for prenatal care in both the developed and developing worlds, although they require validation in larger, blinded clinical trials.
Abstract: Noninvasive blood tests that provide information about fetal development and gestational age could potentially improve prenatal care. Ultrasound, the current gold standard, is not always affordable in low-resource settings and does not predict spontaneous preterm birth, a leading cause of infant death. In a pilot study of 31 healthy pregnant women, we found that measurement of nine cell-free RNA (cfRNA) transcripts in maternal blood predicted gestational age with comparable accuracy to ultrasound but at substantially lower cost. In a related study of 38 women (23 full-term and 15 preterm deliveries), all at elevated risk of delivering preterm, we identified seven cfRNA transcripts that accurately classified women who delivered preterm up to 2 months in advance of labor. These tests hold promise for prenatal care in both the developed and developing worlds, although they require validation in larger, blinded clinical trials.

178 citations

Journal ArticleDOI
TL;DR: It is suggested that peanut OIT could desensitise individuals with peanut allergy to 4000 mg peanut protein but discontinuation, or even reduction to 300 mg daily, could increase the likelihood of regaining clinical reactivity to peanut.

178 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a hybrid estimator, which combines the maximum likelihood fitting within some parametric family such as the normal or by nonparametric methods such as kernel density estimation, by putting an exponential family ''through'' a non-parametric estimator.
Abstract: i this paper have Y being portions of the real line or of the plane, but the methodology applies just as well to higher dimensionalities and to more complicated spaces. . Estimates of g y are traditionally constructed in two quite different ways: by maximum likelihood fitting within some parametric family such as the normal or by nonparametric methods such as kernel density estimation. These two methods can be combined by putting an exponential family ''through'' a nonparametric estimator. The resulting hybrid estimators are the specially designed exponential families of the title. Figure 1 shows a simple example of this methodology. The y are pain i scores for n s 67 women, each obtained by averaging the results from a questionnaire administered after an operation. The scale runs from y s 0 s w x

174 citations


Cited by
More filters
Journal Article
TL;DR: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems, focusing on bringing machine learning to non-specialists using a general-purpose high-level language.
Abstract: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.sourceforge.net.

47,974 citations

Journal ArticleDOI
TL;DR: This work presents DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates, which enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression.
Abstract: In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html .

47,038 citations

Journal ArticleDOI
TL;DR: A new method for estimation in linear models called the lasso, which minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant, is proposed.
Abstract: SUMMARY We propose a new method for estimation in linear models. The 'lasso' minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactly 0 and hence gives interpretable models. Our simulation studies suggest that the lasso enjoys some of the favourable properties of both subset selection and ridge regression. It produces interpretable models like subset selection and exhibits the stability of ridge regression. There is also an interesting relationship with recent work in adaptive function estimation by Donoho and Johnstone. The lasso idea is quite general and can be applied in a variety of statistical models: extensions to generalized regression models and tree-based models are briefly described.

40,785 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations