scispace - formally typeset
Search or ask a question
Author

Robert Tibshirani

Bio: Robert Tibshirani is an academic researcher from Stanford University. The author has contributed to research in topics: Lasso (statistics) & Elastic net regularization. The author has an hindex of 147, co-authored 593 publications receiving 326580 citations. Previous affiliations of Robert Tibshirani include University of Toronto & University of California.


Papers
More filters
Posted Content
TL;DR: In this paper, the authors propose strong rules for discarding predictors in lasso regression and related problems, for computational efficiency, complemented with simple checks of the Karush- Kuhn-Tucker (KKT) conditions.
Abstract: We consider rules for discarding predictors in lasso regression and related problems, for computational efficiency. El Ghaoui et al (2010) propose "SAFE" rules that guarantee that a coefficient will be zero in the solution, based on the inner products of each predictor with the outcome. In this paper we propose strong rules that are not foolproof but rarely fail in practice. These can be complemented with simple checks of the Karush- Kuhn-Tucker (KKT) conditions to provide safe rules that offer substantial speed and space savings in a variety of statistical convex optimization problems.

28 citations

Book ChapterDOI
01 Jan 2009

28 citations

Journal ArticleDOI
TL;DR: It is demonstrated that PCNSL expresses LMO2, HGAL(also known as GCSAM) and BCL6 proteins in 52%, 65% and 56% of tumours, respectively, which is associated with longer progression‐free survival and overall survival.
Abstract: Summary Primary central nervous system lymphoma (PCNSL) is an aggressive sub-variant of non-Hodgkin lymphoma (NHL) with morphological similarities to diffuse large B-cell lymphoma (DLBCL) While methotrexate (MTX)-based therapies have improved patient survival, the disease remains incurable in most cases and its pathogenesis is poorly understood We evaluated 69 cases of PCNSL for the expression of HGAL (also known as GCSAM), LMO2 and BCL6 – genes associated with DLBCL prognosis and pathobiology, and analysed their correlation to survival in 49 PCNSL patients receiving MTX-based therapy We demonstrate that PCNSL expresses LMO2, HGAL(also known as GCSAM) and BCL6 proteins in 52%, 65% and 56% of tumours, respectively BCL6 protein expression was associated with longer progression-free survival (P = 0·006) and overall survival (OS, P = 0·05), while expression of LMO2 protein was associated with longer OS (P = 0·027) Further research is needed to elucidate the function of BCL6 and LMO2 in PCNSL

28 citations

Posted Content
TL;DR: A simple test statistic based on a subsequence of the knots in the graphical lasso path has an exponential asymptotic null distribution, under the null hypothesis that the model contains the true connected components.
Abstract: We consider tests of significance in the setting of the graphical lasso for inverse covariance matrix estimation We propose a simple test statistic based on a subsequence of the knots in the graphical lasso path We show that this statistic has an exponential asymptotic null distribution, under the null hypothesis that the model contains the true connected components Though the null distribution is asymptotic, we show through simulation that it provides a close approximation to the true distribution at reasonable sample sizes Thus the test provides a simple, tractable test for the significance of new edges as they are introduced into the model Finally, we show connections between our results and other results for regularized regression, as well as extensions of our results to other correlation matrix based methods like single-linkage clustering

27 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the outcome of patients with leiomyosarcoma (LMS) from a single institution according to the number of TAMs evaluated through 3 CSF1 associated proteins.
Abstract: INTRODUCTION High numbers of tumor-associated macrophages (TAMs) have been associated with poor outcome in several solid tumors. In 2 previous studies, we showed that colony stimulating factor-1 (CSF1) is secreted by leiomyosarcoma (LMS) and that the increase in macrophages and CSF1 associated proteins are markers for poor prognosis in both gynecologic and nongynecologic LMS in a multicentered study. The purpose of this study is to evaluate the outcome of patients with LMS from a single institution according to the number of TAMs evaluated through 3 CSF1 associated proteins. METHODS Patients with LMS treated at Stanford University with adequate archived tissue and clinical data were eligible for this retrospective study. Data from chart reviews included tumor site, size, grade, stage, treatment, and disease status at the time of last follow-up. The 3 CSF1 associated proteins (CD163, CD16, and cathepsin L) were evaluated by immunohistochemistry on tissue microarrays. Kaplan-Meier survival curves and univariate Cox proportional hazards models were fit to assess the association of clinical predictors as well as CSF1 associated proteins with overall survival. RESULTS A total of 52 patients diagnosed from 1983 to 2007 were evaluated. Univariate Cox proportional hazards models were fit to assess the significance of grade, size, stage, and the 3 CSF1 associated proteins in predicting OS. Grade, size, and stage were not significantly associated with survival in the full patient cohort, but grade and stage were significant predictors of survival in the gynecologic (GYN) LMS samples (P = 0.038 and P = 0.0164, respectively). Increased cathepsin L was associated with a worse outcome in GYN LMS (P = 0.049). Similar findings were seen with CD16 (P < 0.0001). In addition, CSF1 response enriched (all 3 stains positive) GYN LMS had a poor overall survival when compared with CSF1 response poor tumors (P = 0.001). These results were not seen in non-GYN LMS. CONCLUSIONS Our data form an independent confirmation of the prognostic significance of TAMs and the CSF1 associated proteins in LMS. More aggressive or targeted therapies could be considered in the subset of LMS patients that highly express these markers.

27 citations


Cited by
More filters
Journal Article
TL;DR: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems, focusing on bringing machine learning to non-specialists using a general-purpose high-level language.
Abstract: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems. This package focuses on bringing machine learning to non-specialists using a general-purpose high-level language. Emphasis is put on ease of use, performance, documentation, and API consistency. It has minimal dependencies and is distributed under the simplified BSD license, encouraging its use in both academic and commercial settings. Source code, binaries, and documentation can be downloaded from http://scikit-learn.sourceforge.net.

47,974 citations

Journal ArticleDOI
TL;DR: This work presents DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates, which enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression.
Abstract: In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html .

47,038 citations

Journal ArticleDOI
TL;DR: A new method for estimation in linear models called the lasso, which minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant, is proposed.
Abstract: SUMMARY We propose a new method for estimation in linear models. The 'lasso' minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactly 0 and hence gives interpretable models. Our simulation studies suggest that the lasso enjoys some of the favourable properties of both subset selection and ridge regression. It produces interpretable models like subset selection and exhibits the stability of ridge regression. There is also an interesting relationship with recent work in adaptive function estimation by Donoho and Johnstone. The lasso idea is quite general and can be applied in a variety of statistical models: extensions to generalized regression models and tree-based models are briefly described.

40,785 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations