scispace - formally typeset
Search or ask a question
Author

Robert W. Boyd

Other affiliations: University of Glasgow, University of Toronto, Lehigh University  ...read more
Bio: Robert W. Boyd is an academic researcher from University of Ottawa. The author has contributed to research in topics: Photon & Nonlinear optics. The author has an hindex of 98, co-authored 1161 publications receiving 37321 citations. Previous affiliations of Robert W. Boyd include University of Glasgow & University of Toronto.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that stimulated Brillouin scattering can be used to generate all-optical slow-light pulse delays of greater than a pulse length for pulses as short as 16 ns in a single-mode fiber, and strongly suggest that analogous delays can be achieved using stimulated Raman scattering at telecommunication data rates.
Abstract: We demonstrate a technique for generating tunable all-optical delays in room temperature single-mode optical fibers at telecommunication wavelengths using the stimulated Brillouin scattering process. This technique makes use of the rapid variation of the refractive index that occurs in the vicinity of the Brillouin gain feature. The wavelength at which the induced delay occurs is broadly tunable by controlling the wavelength of the laser pumping the process, and the magnitude of the delay can be tuned continuously by as much as 25 ns by adjusting the intensity of the pump field. The technique can be applied to pulses as short as 15 ns. This scheme represents an important first step towards implementing slow-light techniques for various applications including buffering in telecommunication systems.

868 citations

Journal ArticleDOI
TL;DR: It is found that any kind of coincidence imaging technique which uses a "bucket" detector in the test arm is incapable of imaging phase-only objects, whether a classical or quantum source is employed.
Abstract: Coincidence imaging is a technique that extracts an image of a test system from the statistics of photons transmitted by a reference system when the two systems are illuminated by a source possessing appropriate correlations. It has recently been argued that quantum entangled sources are necessary for the implementation of this technique. We show that this technique does not require entanglement, and we provide an experimental demonstration of coincidence imaging using a classical source. We further find that any kind of coincidence imaging technique which uses a "bucket" detector in the test arm is incapable of imaging phase-only objects, whether a classical or quantum source is employed.

811 citations

Journal ArticleDOI
13 May 2016-Science
TL;DR: It is reported that indium tin oxide can acquire an ultrafast and large intensity-dependent refractive index in the region of the spectrum where the real part of its permittivity vanishes, and offers the possibility of designing material structures with large ultrafast nonlinearity for applications in nanophotonics.
Abstract: Nonlinear optical phenomena are crucial for a broad range of applications, such as microscopy, all-optical data processing, and quantum information. However, materials usually exhibit a weak optical nonlinearity even under intense coherent illumination. We report that indium tin oxide can acquire an ultrafast and large intensity-dependent refractive index in the region of the spectrum where the real part of its permittivity vanishes. We observe a change in the real part of the refractive index of 0.72 ± 0.025, corresponding to 170% of the linear refractive index. This change in refractive index is reversible with a recovery time of about 360 femtoseconds. Our results offer the possibility of designing material structures with large ultrafast nonlinearity for applications in nanophotonics.

791 citations

Journal ArticleDOI
11 Jul 2003-Science
TL;DR: It is observed that ions in mirror sites are inversely saturable and cause superluminal light propagation, whereas ions in inversion sites experience conventional saturable absorption and produce slow light.
Abstract: We have observed both superluminal and ultraslow light propagation in an alexandrite crystal at room temperature. Group velocities as slow as 91 meters per second to as fast as -800 meters per second were measured and attributed to the influence of coherent population oscillations involving chromium ions in either mirror or inversion sites within the crystal lattice. Namely, ions in mirror sites are inversely saturable and cause superluminal light propagation, whereas ions in inversion sites experience conventional saturable absorption and produce slow light. This technique for producing large group indices is considerably easier than the existing methods to implement and is therefore suitable for diverse applications.

753 citations

Journal ArticleDOI
TL;DR: Karimi et al. as mentioned in this paper showed that a plasmonic metasurface comprising an array of nano-antennas can couple spin-to-orbital angular momentum at thickness much smaller than the wavelength of the light with an efficiency of around 3%.
Abstract: Visible, circularly polarised light can be transformed into light-carrying orbital angular momentum by a plasmonic metasurface. That is the finding of Ebrahim Karimi and co-workers at the University of Ottawa in Canada and the University of Rochester in the United States. Light with orbital angular momentum (owing to a twisted phase front) is traditionally generated using specially designed optical elements such as spatial light modulator, cylindrical lens mode converters and q-plate. The researchers have now shown that a plasmonic metasurface comprising an array of nano-antennas can couple spin-to-orbital angular momentum at thickness much smaller than the wavelength of the light with an efficiency of around 3%. The conversion takes place due to the birefringence present in the nanostructure array. This approach could yield ultrathin generators of visible light with orbital angular momentum, for potential applications in spectroscopy, imaging, sensing and quantum information.

730 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum, which provides new opportunities for increasing the data capacity of free-space optical communications links.
Abstract: Researchers demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum — a development that provides new opportunities for increasing the data capacity of free-space optical communications links.

3,556 citations

Journal ArticleDOI
TL;DR: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light as mentioned in this paper, which holds great promise for applications.
Abstract: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light. Drawing inspiration from the discovery of the quantum Hall effects and topological insulators in condensed matter, recent advances have shown how to engineer analogous effects also for photons, leading to remarkable phenomena such as the robust unidirectional propagation of light, which hold great promise for applications. Thanks to the flexibility and diversity of photonics systems, this field is also opening up new opportunities to realize exotic topological models and to probe and exploit topological effects in new ways. This article reviews experimental and theoretical developments in topological photonics across a wide range of experimental platforms, including photonic crystals, waveguides, metamaterials, cavities, optomechanics, silicon photonics, and circuit QED. A discussion of how changing the dimensionality and symmetries of photonics systems has allowed for the realization of different topological phases is offered, and progress in understanding the interplay of topology with non-Hermitian effects, such as dissipation, is reviewed. As an exciting perspective, topological photonics can be combined with optical nonlinearities, leading toward new collective phenomena and novel strongly correlated states of light, such as an analog of the fractional quantum Hall effect.

3,052 citations