scispace - formally typeset
R

Robert W. Brodersen

Researcher at University of California, Berkeley

Publications -  256
Citations -  29342

Robert W. Brodersen is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: CMOS & Signal processing. The author has an hindex of 68, co-authored 256 publications receiving 28632 citations. Previous affiliations of Robert W. Brodersen include University of Hong Kong & Texas Instruments.

Papers
More filters
Proceedings ArticleDOI

Implementation issues in spectrum sensing for cognitive radios

TL;DR: To improve radio sensitivity of the sensing function through processing gain, three digital signal processing techniques are investigated: matched filtering, energy detection and cyclostationary feature detection.
Journal ArticleDOI

Low-power CMOS digital design

TL;DR: In this paper, techniques for low power operation are presented which use the lowest possible supply voltage coupled with architectural, logic style, circuit, and technology optimizations to reduce power consumption in CMOS digital circuits while maintaining computational throughput.
Journal Article

Low-Power CMOS Digital Design

TL;DR: An architecturally based scaling strategy is presented which indicates that the optimum voltage is much lower than that determined by other scaling considerations, and is achieved by trading increased silicon area for reduced power consumption.
Proceedings ArticleDOI

Cooperative Sensing among Cognitive Radios

TL;DR: This work proposes light-weight cooperation in sensing based on hard decisions to mitigate the sensitivity requirements on individual radios and shows that the "link budget" that system designers have to reserve for fading is a significant function of the required probability of detection.
Book

Low Power Digital CMOS Design

TL;DR: The Hierarchy of Limits of Power J.D. Stratakos, et al., and Low Power Programmable Computation coauthored with M.B. Srivastava, provide a review of the main approaches to Voltage Scaling Approaches.