scispace - formally typeset
Search or ask a question
Author

Robert W. Dalrymple

Other affiliations: Brock University
Bio: Robert W. Dalrymple is an academic researcher from Queen's University. The author has contributed to research in topics: Facies & Fluvial. The author has an hindex of 48, co-authored 112 publications receiving 10636 citations. Previous affiliations of Robert W. Dalrymple include Brock University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, two distinct but intergradational types of estuaries (wave-and tide-dominated) are recognized on the basis of the dominant marine process: wave-dominated and river-dominated.
Abstract: The nature and organization of facies within incised-valley estuaries is controlled by the interplay between marine processes (waves and tides), which generally decrease in intensity up-estuary, and fluvial processes, which decrease in strength down-estuary. All estuaries ideally possess a three-fold (tripartite) structure: an outer, marine-dominated portion where the net bedload transport is headward; a relatively low-energy central zone where there is net bedload convergence; and an inner, river-dominated (but marine-influenced) part where the net transport is seaward. These three zones are not equally developed in all estuaries because of such factors as sediment availability, coastal zone gradient and the stage of estuary evolution. Two distinct but intergradational types of estuaries (wave- and tide-dominated) are recognized on the basis of the dominant marine process. Wave-dominated estuaries typically possess a well-defined tripartite zonation: a marine sand body comprised of barrier, washover, tidal inlet and tidal delta deposits; a fine-grained (generally muddy) central basin; and a bay-head delta that experiences tidal and/or salt-water influence. The marine sand body in tide-dominated estuaries consists of elongate sand bars and broad sand flats that pass headward into a low-sinuosity ("straight") single channel; net sand transport is headward in these areas. The equivalent of the central basin consists of a zone of tight meanders where bedload transport by flood-tidal and river currents is equal in the long term, while the inner, river-dominated zone has a single, low-sinuosity ("straight") channel. These facies models and their conceptual basis provide a practical means of highlighting the differences and similarities between estuaries. They also allow the predication of the stratigraphy of estuarine deposits within a sequence-stratigraphic context.

1,464 citations

Journal ArticleDOI
TL;DR: In this paper, a model-independent framework of genetic units and bounding surfaces for sequence stratigraphy has been proposed, based on the interplay of accommodation and sedimentation (i.e., forced regressive, lowstand and highstand normal regressive), which are bounded by sequence stratigraphic surfaces.

1,255 citations

Journal ArticleDOI
TL;DR: Catuneanu et al. as discussed by the authors used a neutral approach that focused on model-independent, fundamental concepts, because these are the ones common to various approaches and this search for common ground is what they meant by "standardization", not the imposition of a strict, inflexible set of rules for the placement of sequence-stratigraphicsurfaces.

872 citations

Journal ArticleDOI
TL;DR: A review of the sediment facies change through the fluvial-to-marine transition is presented in this article. But the authors focus on the sedimentological responses to these processes, focusing on the observable, longitudinal variations in the development and/or abundance of each deposit characteristic (e.g., sand grain size, paleocurrent patterns, mud drapes, and biological attributes).

812 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, two distinct but intergradational types of estuaries (wave-and tide-dominated) are recognized on the basis of the dominant marine process: wave-dominated and river-dominated.
Abstract: The nature and organization of facies within incised-valley estuaries is controlled by the interplay between marine processes (waves and tides), which generally decrease in intensity up-estuary, and fluvial processes, which decrease in strength down-estuary. All estuaries ideally possess a three-fold (tripartite) structure: an outer, marine-dominated portion where the net bedload transport is headward; a relatively low-energy central zone where there is net bedload convergence; and an inner, river-dominated (but marine-influenced) part where the net transport is seaward. These three zones are not equally developed in all estuaries because of such factors as sediment availability, coastal zone gradient and the stage of estuary evolution. Two distinct but intergradational types of estuaries (wave- and tide-dominated) are recognized on the basis of the dominant marine process. Wave-dominated estuaries typically possess a well-defined tripartite zonation: a marine sand body comprised of barrier, washover, tidal inlet and tidal delta deposits; a fine-grained (generally muddy) central basin; and a bay-head delta that experiences tidal and/or salt-water influence. The marine sand body in tide-dominated estuaries consists of elongate sand bars and broad sand flats that pass headward into a low-sinuosity ("straight") single channel; net sand transport is headward in these areas. The equivalent of the central basin consists of a zone of tight meanders where bedload transport by flood-tidal and river currents is equal in the long term, while the inner, river-dominated zone has a single, low-sinuosity ("straight") channel. These facies models and their conceptual basis provide a practical means of highlighting the differences and similarities between estuaries. They also allow the predication of the stratigraphy of estuarine deposits within a sequence-stratigraphic context.

1,464 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the role of chemical composition and particle size in cloud condensation nucleation processes, and the role that the chemical composition plays in the process of cloud droplet and ice nucleation.

1,347 citations

Journal ArticleDOI
TL;DR: In this article, the authors outline the principles for landslide mapping, and review the conventional methods for the preparation of landslide maps, including geomorphological, event, seasonal, and multi-temporal inventories.

1,290 citations

Journal ArticleDOI
TL;DR: In this paper, a model-independent framework of genetic units and bounding surfaces for sequence stratigraphy has been proposed, based on the interplay of accommodation and sedimentation (i.e., forced regressive, lowstand and highstand normal regressive), which are bounded by sequence stratigraphic surfaces.

1,255 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of coal fly ash at the global level, focusing on its current and potential applications, including use in the soil amelioration, construction industry, ceramic industry, catalysis, depth separation, zeolite synthesis, etc.

1,167 citations