scispace - formally typeset
Search or ask a question
Author

Robert W. Noyes

Bio: Robert W. Noyes is an academic researcher from Harvard University. The author has contributed to research in topics: Planet & Exoplanet. The author has an hindex of 63, co-authored 185 publications receiving 18263 citations. Previous affiliations of Robert W. Noyes include Pontifical Catholic University of Chile & CFA Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the mean level of Ca n H and K emission (averaged over 15 years) is correlated with rotation period, as expected, but there is a further dependence of the emission on spectral type.
Abstract: Rotation periods are reported for 14 main-sequence stars, bringing the total number of such stars with well-determined rotation periods to 41. It is found that the mean level of their Ca n H and K emission (averaged over 15 years) is correlated with rotation period, as expected. However, there is a further dependence of the emission on spectral type. When expressed as the ratio of chromospheric flux to total bolometric flux, the emission is well correlated with the parameter Pohs/Tc, where Pohs is the observed rotation period and tc(B—V) is a theoretically-derived convective overturn time, calculated assuming a mixing length to scale height ratio a ~ 2. This finding is consonant with general predictions of dynamo theory, if the relation between chromospheric emission and dynamo-generated magnetic fields is essentially independent of rotation rate and spectral type for the stars considered. The dependence of mean chromospheric emission on rotation and spectral type is essentially the same for stars above and below the Vaughan-Preston “gap,” thus casting doubt on explanations of the gap in terms of a discontinuity in dynamo characteristics. Subject headings: Ca n emission — convection — stai

1,650 citations

Journal ArticleDOI
TL;DR: In this paper, high-precision spectrophotometric observations of four planetary transits of HD 209458, in the region of the sodium resonance doublet at 589.3 nm, were reported.
Abstract: We report high-precision spectrophotometric observations of four planetary transits of HD 209458, in the region of the sodium resonance doublet at 589.3 nm. We find that the photometric dimming during transit in a bandpass centered on the sodium feature is deeper by (2.32 ± 0.57) × 10-4 relative to simultaneous observations of the transit in adjacent bands. We interpret this additional dimming as absorption from sodium in the planetary atmosphere, as recently predicted from several theoretical modeling efforts. Our model for a cloudless planetary atmosphere with a solar abundance of sodium in atomic form predicts more sodium absorption than we observe. There are several possibilities that may account for this reduced amplitude, including reaction of atomic sodium into molecular gases and/or condensates, photoionization of sodium by the stellar flux, a low primordial abundance of sodium, and the presence of clouds high in the atmosphere.

1,300 citations

Journal ArticleDOI
TL;DR: In this article, high precision spectrophotometric observations of four planetary transits of HD 209458, in the region of the sodium resonance doublet at 589.3 nm, were reported.
Abstract: We report high precision spectrophotometric observations of four planetary transits of HD 209458, in the region of the sodium resonance doublet at 589.3 nm. We find that the photometric dimming during transit in a bandpass centered on the sodium feature is deeper by (2.32 +/- 0.57) x 10^{-4} relative to simultaneous observations of the transit in adjacent bands. We interpret this additional dimming as absorption from sodium in the planetary atmosphere, as recently predicted from several theoretical modeling efforts. Our model for a cloudless planetary atmosphere with a solar abundance of sodium in atomic form predicts more sodium absorption than we observe. There are several possibilities that may account for this reduced amplitude, including reaction of atomic sodium into molecular gases and/or condensates, photoionization of sodium by the stellar flux, a low primordial abundance of sodium, or the presence of clouds high in the atmosphere.

946 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review some investigations into the mass and energy flow in the solar chromosphere and corona; the objective of these investigations is the development of a physical model that will not only account for the physical conditions in the outer atmosphere of the sun, but can also be applied to the study of the outer atmospheres of other stars.
Abstract: The work reviews some investigations into the mass and energy flow in the solar chromosphere and corona; the objective of these investigations is the development of a physical model that will not only account for the physical conditions in the outer atmosphere of the sun, but can also be applied to the study of the outer atmospheres of other stars. Particular attention is given to mass and energy flow in regions with weak and strong magnetic fields, to observational evidence for wave heating and systematic mass flows, and to heating mechanisms. Consideration is given throughout to mechanisms of energy input and energy loss.

820 citations

Journal ArticleDOI
TL;DR: In this paper, velocity fields in the solar atmosphere were detected and measured by an adaptation of a technique for measuring magnetic fields (R. B. Leighton), which was used to detect and measure the velocities of the Sun during the summers of l960 and 1961.
Abstract: Velocity fields in the solar atmosphere were detected and measured by an adaptation of a technique for measuring msgnetic fields (R. B. Leighton. Ap. J. 130: 366 (1959)). Data obtaIned during the summers of l960 and 1961 were partially analyzed, and principal results are described. (L.N.N.)

701 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The solar chemical composition is an important ingredient in our understanding of the formation, structure, and evolution of both the Sun and our Solar System as discussed by the authors, and it is an essential refer...
Abstract: The solar chemical composition is an important ingredient in our understanding of the formation, structure, and evolution of both the Sun and our Solar System. Furthermore, it is an essential refer ...

8,605 citations

Journal ArticleDOI
TL;DR: In this article, solar photospheric and meteoritic CI chondrite abundance determinations for all elements are summarized and the best currently available photosphere abundances are selected, including the meteoritic and solar abundances of a few elements (e.g., noble gases, beryllium, boron, phosphorous, sulfur).
Abstract: Solar photospheric and meteoritic CI chondrite abundance determinations for all elements are summarized and the best currently available photospheric abundances are selected. The meteoritic and solar abundances of a few elements (e.g., noble gases, beryllium, boron, phosphorous, sulfur) are discussed in detail. The photospheric abundances give mass fractions of hydrogen (X ¼ 0:7491), helium (Y ¼ 0:2377), and heavy elements (Z ¼ 0:0133), leading to Z=X ¼ 0:0177, which is lower than the widely used Z=X ¼ 0:0245 from previous compilations. Recent results from standard solar models considering helium and heavy-element settling imply that photospheric abundances and mass fractions are not equal to protosolar abundances (representative of solar system abundances). Protosolar elemental and isotopic abundances are derived from photospheric abundances by considering settling effects. Derived protosolar mass fractions are X0 ¼ 0:7110, Y0 ¼ 0:2741, and Z0 ¼ 0:0149. The solar system and photospheric abundance tables are used to compute self-consistent sets of condensation temperatures for all elements. Subject headings: astrochemistry — meteors, meteoroids — solar system: formation — Sun: abundances — Sun: photosphere

4,305 citations

Journal ArticleDOI
23 Nov 1995-Nature
TL;DR: The presence of a Jupiter-mass companion to the star 51 Pegasi is inferred from observations of periodic variations in the star's radial velocity as discussed by the authors, which would be well inside the orbit of Mercury in our Solar System.
Abstract: The presence of a Jupiter-mass companion to the star 51 Pegasi is inferred from observations of periodic variations in the star's radial velocity. The companion lies only about eight million kilometres from the star, which would be well inside the orbit of Mercury in our Solar System. This object might be a gas-giant planet that has migrated to this location through orbital evolution, or from the radiative stripping of a brown dwarf.

3,957 citations

Journal ArticleDOI
19 Feb 2010-Science
TL;DR: The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars, which is the region where planetary temperatures are suitable for water to exist on a planet's surface.
Abstract: The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet’s surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (~0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.

3,663 citations

Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as discussed by the authors is an open source software package for modeling the evolution of stellar structures and composition. But it is not suitable for large-scale systems such as supernovae.
Abstract: We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA star. Improvements in MESA star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 M ? stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA star solves the fully coupled stellar structure and composition equations, and we show how this has improved the scaling of MESA's calculational speed on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit that packages all the required components needed to form a unified, maintained, and well-validated build environment for MESA. We also highlight a few tools developed by the community for rapid visualization of MESA star results.

2,761 citations