scispace - formally typeset
Search or ask a question
Author

Robert X. Gao

Bio: Robert X. Gao is an academic researcher from Case Western Reserve University. The author has contributed to research in topics: Wavelet & Bearing (mechanical). The author has an hindex of 50, co-authored 342 publications receiving 11182 citations. Previous affiliations of Robert X. Gao include University of Massachusetts Amherst & University of Palermo.


Papers
More filters
Journal ArticleDOI
TL;DR: The applications of deep learning in machine health monitoring systems are reviewed mainly from the following aspects: Auto-encoder and its variants, Restricted Boltzmann Machines, Convolutional Neural Networks, and Recurrent Neural Networks.

1,569 citations

Journal ArticleDOI
TL;DR: Current applications of wavelets in rotary machine fault diagnosis are summarized and some new research trends, including wavelet finite element method, dual-tree complex wavelet transform, wavelet function selection, newWavelet function design, and multi-wavelets that advance the development of wavelet-based fault diagnosed are discussed.

1,087 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of commonly used deep learning algorithms and discusses their applications toward making manufacturing “smart”, including computational methods based on deep learning that aim to improve system performance in manufacturing.

1,025 citations

Journal ArticleDOI
TL;DR: The proposed feature selection scheme has shown to provide more accurate defect classification with fewer feature inputs than using all features initially considered relevant, and confirms its utility as an effective tool for machine health assessment.
Abstract: The sensitivity of various features that are characteristic of a machine defect may vary considerably under different operating conditions. Hence it is critical to devise a systematic feature selection scheme that provides guidance on choosing the most representative features for defect classification. This paper presents a feature selection scheme based on the principal component analysis (PCA) method. The effectiveness of the scheme was verified experimentally on a bearing test bed, using both supervised and unsupervised defect classification approaches. The objective of the study was to identify the severity level of bearing defects, where no a priori knowledge on the defect conditions was available. The proposed scheme has shown to provide more accurate defect classification with fewer feature inputs than using all features initially considered relevant. The result confirms its utility as an effective tool for machine health assessment.

508 citations

Journal ArticleDOI
TL;DR: In this paper, a new approach to machine health monitoring based on the Approximate Entropy (ApEn) is presented, which is a statistical measure that quantifies the regularity of a time series, such as vibration signals measured from an electrical motor or a rolling bearing.

384 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF.
Abstract: A new Ensemble Empirical Mode Decomposition (EEMD) is presented. This new approach consists of sifting an ensemble of white noise-added signal (data) and treats the mean as the final true result. Finite, not infinitesimal, amplitude white noise is necessary to force the ensemble to exhaust all possible solutions in the sifting process, thus making the different scale signals to collate in the proper intrinsic mode functions (IMF) dictated by the dyadic filter banks. As EEMD is a time–space analysis method, the added white noise is averaged out with sufficient number of trials; the only persistent part that survives the averaging process is the component of the signal (original data), which is then treated as the true and more physical meaningful answer. The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF. With this ensemble mean, one can separate scales naturall...

6,437 citations

Journal ArticleDOI
TL;DR: This work proposes an entirely non-recursive variational mode decomposition model, where the modes are extracted concurrently and is a generalization of the classic Wiener filter into multiple, adaptive bands.
Abstract: During the late 1990s, Huang introduced the algorithm called Empirical Mode Decomposition, which is widely used today to recursively decompose a signal into different modes of unknown but separate spectral bands. EMD is known for limitations like sensitivity to noise and sampling. These limitations could only partially be addressed by more mathematical attempts to this decomposition problem, like synchrosqueezing, empirical wavelets or recursive variational decomposition. Here, we propose an entirely non-recursive variational mode decomposition model, where the modes are extracted concurrently. The model looks for an ensemble of modes and their respective center frequencies, such that the modes collectively reproduce the input signal, while each being smooth after demodulation into baseband. In Fourier domain, this corresponds to a narrow-band prior. We show important relations to Wiener filter denoising. Indeed, the proposed method is a generalization of the classic Wiener filter into multiple, adaptive bands. Our model provides a solution to the decomposition problem that is theoretically well founded and still easy to understand. The variational model is efficiently optimized using an alternating direction method of multipliers approach. Preliminary results show attractive performance with respect to existing mode decomposition models. In particular, our proposed model is much more robust to sampling and noise. Finally, we show promising practical decomposition results on a series of artificial and real data.

4,111 citations

Journal ArticleDOI
TL;DR: This paper attempts to summarise and review the recent research and developments in diagnostics and prognostics of mechanical systems implementing CBM with emphasis on models, algorithms and technologies for data processing and maintenance decision-making.

3,848 citations