scispace - formally typeset
Search or ask a question
Author

Roberta Fiocco

Bio: Roberta Fiocco is an academic researcher from University of Milan. The author has contributed to research in topics: Stem cell & Neural stem cell. The author has an hindex of 7, co-authored 8 publications receiving 3613 citations.

Papers
More filters
Journal Article•DOI•
TL;DR: It is reported that, unlike other brain cancers, the lethal glioblastoma multiforme contains neural precursors endowed with all of the critical features expected from neural stem cells.
Abstract: Transformed stem cells have been isolated from some human cancers. We report that, unlike other brain cancers, the lethal glioblastoma multiforme contains neural precursors endowed with all of the critical features expected from neural stem cells. Similar, yet not identical, to their normal neural stem cell counterpart, these precursors emerge as unipotent (astroglial) in vivo and multipotent (neuronal-astroglial-oligodendroglial) in culture. More importantly, these cells can act as tumor-founding cells down to the clonal level and can establish tumors that closely resemble the main histologic, cytologic, and architectural features of the human disease, even when challenged through serial transplantation. Thus, cells possessing all of the characteristics expected from tumor neural stem cells seem to be involved in the growth and recurrence of adult human glioblastomas multiforme.

2,489 citations

Journal Article•DOI•
TL;DR: It is shown that acutely isolated and clonally derived neural stem cells from mice and humans could produce skeletal myotubes in vitro and in vivo, the latter following transplantation into adult animals and a community effect between neural cells may override such myogenic induction.
Abstract: Distinct cell lineages established early in development are usually maintained throughout adulthood. Thus, adult stem cells have been thought to generate differentiated cells specific to the tissue in which they reside. This view has been challenged; for example, neural stem cells can generate cells that normally originate from a different germ layer. Here we show that acutely isolated and clonally derived neural stem cells from mice and humans could produce skeletal myotubes in vitro and in vivo, the latter following transplantation into adult animals. Myogenic conversion in vitro required direct exposure to myoblasts, and was blocked if neural cells were clustered. Thus, a community effect between neural cells may override such myogenic induction. We conclude that neural stem cells, which generate neurons, glia and blood cells, can also produce skeletal muscle cells, and can undergo various patterns of differentiation depending on exposure to appropriate epigenetic signals in mature tissues.

497 citations

Journal Article•DOI•
TL;DR: It is determined that altering the expression of Emx2 affects neither the cell cycle length of adult neural stem cells nor their ability to generate neurons and glia, and the frequency of symmetric divisions that generate two stem cells increases, whereas it decreases when EmX2 expression is enhanced.
Abstract: The appropriate control of proliferation of neural precursors has fundamental implications for the development of the central nervous system and for cell homeostasis/replacement within specific brain regions throughout adulthood. The role of genetic determinants in this process is largely unknown. We report the expression of the homeobox transcription factor Emx2 within the periventricular region of the adult telencephalon. This neurogenetic area displays a large number of multipotent stem cells. Adult neural stem cells isolated from this region do express Emx2 and down-regulate it significantly upon differentiation into neurons and glia. Abolishing or, increasing Emx2 expression in adult neural stem cells greatly enhances or reduces their rate of proliferation, respectively. We determined that altering the expression of Emx2 affects neither the cell cycle length of adult neural stem cells nor their ability to generate neurons and glia. Rather, when Emx2 expression is abolished, the frequency of symmetric divisions that generate two stem cells increases, whereas it decreases when Emx2 expression is enhanced.

143 citations

Journal Article•DOI•
TL;DR: The characteristics of the NSCs of the adult mammalian CNS, their potentiality in terms of proliferation and differentiation capabilities, as well as their stability in long-term culture, are described, all attributes that make them a good tool for tissue replacement therapies.
Abstract: The concept of the immutability of the nervous tissue has recently been replaced with the new idea that a continuous neurogenic turnover does occur in some limited areas of the central nervous system (CNS). At least two neurogenic regions of the adult mammalian CNS are involved in this process: the subventricular zone of the forebrain and the dentate gyrus of the hippocampus, which are considered to be a reservoir of new neural cells. Neural stem cells (NSCs) are multipotential progenitors that have self-renewal capability. While in vivo endogenous NSCs seem able to produce almost exclusively neurons, a single NSC in vitro is competent to generate neurons, astrocytes, and oligodendrocytes. NSCs lack a specific morphology and unambiguous surface markers that could allow their identification. For this reason, one of the major difficulties in identifying stem cells is that they are defined in terms of their functional capabilities, the determination of which might alter the cells' nature. The purpose of this review is to describe the characteristics of the NSCs of the adult mammalian CNS, their potentiality in terms of proliferation and differentiation capabilities, as well as their stability in long-term culture, all attributes that make them a good tool for tissue replacement therapies.

76 citations


Cited by
More filters
Journal Article•DOI•
18 Nov 2004-Nature
TL;DR: The development of a xenograft assay that identified human brain tumour initiating cells that initiate tumours in vivo gives strong support for the CSC hypothesis as the basis for many solid tumours, and establishes a previously unidentified cellular target for more effective cancer therapies.
Abstract: The cancer stem cell (CSC) hypothesis suggests that neoplastic clones are maintained exclusively by a rare fraction of cells with stem cell properties. Although the existence of CSCs in human leukaemia is established, little evidence exists for CSCs in solid tumours, except for breast cancer. Recently, we prospectively isolated a CD133+ cell subpopulation from human brain tumours that exhibited stem cell properties in vitro. However, the true measures of CSCs are their capacity for self renewal and exact recapitulation of the original tumour. Here we report the development of a xenograft assay that identified human brain tumour initiating cells that initiate tumours in vivo. Only the CD133+ brain tumour fraction contains cells that are capable of tumour initiation in NOD-SCID (non-obese diabetic, severe combined immunodeficient) mouse brains. Injection of as few as 100 CD133+ cells produced a tumour that could be serially transplanted and was a phenocopy of the patient's original tumour, whereas injection of 10(5) CD133- cells engrafted but did not cause a tumour. Thus, the identification of brain tumour initiating cells provides insights into human brain tumour pathogenesis, giving strong support for the CSC hypothesis as the basis for many solid tumours, and establishes a previously unidentified cellular target for more effective cancer therapies.

7,120 citations

Journal Article•DOI•
TL;DR: To confirm whether adipose tissue contains stem cells, the PLA population and multiple clonal isolates were analyzed using several molecular and biochemical approaches and PLA cells exhibited unique characteristics distinct from those seen in MSCs, including differences in CD marker profile and gene expression.
Abstract: Much of the work conducted on adult stem cells has focused on mesenchymal stem cells (MSCs) found within the bone marrow stroma. Adipose tissue, like bone marrow, is derived from the embryonic mesenchyme and contains a stroma that is easily isolated. Preliminary studies have recently identified a putative stem cell population within the adipose stromal compartment. This cell population, termed processed lipoaspirate (PLA) cells, can be isolated from human lipoaspirates and, like MSCs, differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. To confirm whether adipose tissue contains stem cells, the PLA population and multiple clonal isolates were analyzed using several molecular and biochemical approaches. PLA cells expressed multiple CD marker antigens similar to those observed on MSCs. Mesodermal lineage induction of PLA cells and clones resulted in the expression of multiple lineage-specific genes and proteins. Furthermore, biochemical analysis also confirmed lineage-specific activity. In addition to mesodermal capacity, PLA cells and clones differentiated into putative neurogenic cells, exhibiting a neuronal-like morphology and expressing several proteins consistent with the neuronal phenotype. Finally, PLA cells exhibited unique characteristics distinct from those seen in MSCs, including differences in CD marker profile and gene expression.

6,473 citations

Journal Article•DOI•
07 Dec 2006-Nature
TL;DR: This work shows that cancer stem cells contribute to glioma radioresistance through preferential activation of the DNA damage checkpoint response and an increase in DNA repair capacity, and suggests that CD133-positive tumour cells could be the source of tumour recurrence after radiation.
Abstract: Ionizing radiation represents the most effective therapy for glioblastoma (World Health Organization grade IV glioma), one of the most lethal human malignancies, but radiotherapy remains only palliative because of radioresistance. The mechanisms underlying tumour radioresistance have remained elusive. Here we show that cancer stem cells contribute to glioma radioresistance through preferential activation of the DNA damage checkpoint response and an increase in DNA repair capacity. The fraction of tumour cells expressing CD133 (Prominin-1), a marker for both neural stem cells and brain cancer stem cells, is enriched after radiation in gliomas. In both cell culture and the brains of immunocompromised mice, CD133-expressing glioma cells survive ionizing radiation in increased proportions relative to most tumour cells, which lack CD133. CD133-expressing tumour cells isolated from both human glioma xenografts and primary patient glioblastoma specimens preferentially activate the DNA damage checkpoint in response to radiation, and repair radiation-induced DNA damage more effectively than CD133-negative tumour cells. In addition, the radioresistance of CD133-positive glioma stem cells can be reversed with a specific inhibitor of the Chk1 and Chk2 checkpoint kinases. Our results suggest that CD133-positive tumour cells represent the cellular population that confers glioma radioresistance and could be the source of tumour recurrence after radiation. Targeting DNA damage checkpoint response in cancer stem cells may overcome this radioresistance and provide a therapeutic model for malignant brain cancers.

5,771 citations

Journal Article•DOI•
TL;DR: A robust gene expression-based molecular classification of GBM into Proneural, Neural, Classical, and Mesenchymal subtypes is described and multidimensional genomic data is integrated to establish patterns of somatic mutations and DNA copy number.

5,764 citations

01 Jan 2010
TL;DR: The Cancer Genome Atlas Network recently cataloged recurrent genomic abnormalities in glioblastoma multiforme (GBM) and proposed a robust gene expression-based molecular classification of GBM into Proneural, Neural, Classical, and Mesenchymal subtypes as discussed by the authors.
Abstract: The Cancer Genome Atlas Network recently cataloged recurrent genomic abnormalities in glioblastoma multiforme (GBM). We describe a robust gene expression-based molecular classification of GBM into Proneural, Neural, Classical, and Mesenchymal subtypes and integrate multidimensional genomic data to establish patterns of somatic mutations and DNA copy number. Aberrations and gene expression of EGFR, NF1, and PDGFRA/IDH1 each define the Classical, Mesenchymal, and Proneural subtypes, respectively. Gene signatures of normal brain cell types show a strong relationship between subtypes and different neural lineages. Additionally, response to aggressive therapy differs by subtype, with the greatest benefit in the Classical subtype and no benefit in the Proneural subtype. We provide a framework that unifies transcriptomic and genomic dimensions for GBM molecular stratification with important implications for future studies.

4,464 citations