scispace - formally typeset
Search or ask a question

Showing papers by "Roberto Car published in 2021"


Journal ArticleDOI
TL;DR: Quantum ESPRESSO as mentioned in this paper is an open-source distribution of computer codes for quantum-mechanical materials modeling, based on density-functional theory, pseudopotentials, and plane waves.
Abstract: Quantum ESPRESSO is an open-source distribution of computer codes for quantum-mechanical materials modeling, based on density-functional theory, pseudopotentials, and plane waves, and renowned for its performance on a wide range of hardware architectures, from laptops to massively parallel computers, as well as for the breadth of its applications. In this paper we present a motivation and brief review of the ongoing effort to port Quantum ESPRESSO onto heterogeneous architectures based on hardware accelerators, which will overcome the energy constraints that are currently hindering the way towards exascale computing.

356 citations


Journal ArticleDOI
TL;DR: Zhang et al. as mentioned in this paper presented the GPU version of DeePMD-kit, which, upon training a deep neural network model using ab- initio data, can drive extremely large-scale molecular dynamics (MD) simulation with ab initio accuracy.

104 citations


Journal ArticleDOI
TL;DR: Using the Deep Potential methodology, this paper constructed a model that reproduces accurately the potential energy surface of the SCAN approximation of density functional theory for water, from low temperature and pressure to about 2400 K and 50 GPa, excluding the vapor stability region.
Abstract: Using the Deep Potential methodology, we construct a model that reproduces accurately the potential energy surface of the SCAN approximation of density functional theory for water, from low temperature and pressure to about 2400 K and 50 GPa, excluding the vapor stability region The computational efficiency of the model makes it possible to predict its phase diagram using molecular dynamics Satisfactory overall agreement with experimental results is obtained The fluid phases, molecular and ionic, and all the stable ice polymorphs, ordered and disordered, are predicted correctly, with the exception of ice III and XV that are stable in experiments, but metastable in the model The evolution of the atomic dynamics upon heating, as ice VII transforms first into ice VII^{''} and then into an ionic fluid, reveals that molecular dissociation and breaking of the ice rules coexist with strong covalent fluctuations, explaining why only partial ionization was inferred in experiments

85 citations


Journal ArticleDOI
TL;DR: In this article, the role of long-range interactions in atomistic machine learning models was explored by analyzing the effects on fitting accuracy, isolated cluster properties, and bulk thermodynamic properties.
Abstract: We explore the role of long-range interactions in atomistic machine-learning models by analyzing the effects on fitting accuracy, isolated cluster properties, and bulk thermodynamic properties. Such models have become increasingly popular in molecular simulations given their ability to learn highly complex and multi-dimensional interactions within a local environment; however, many of them fundamentally lack a description of explicit long-range interactions. In order to provide a well-defined benchmark system with precisely known pairwise interactions, we chose as the reference model a flexible version of the Extended Simple Point Charge (SPC/E) water model. Our analysis shows that while local representations are sufficient for predictions of the condensed liquid phase, the short-range nature of machine-learning models falls short in representing cluster and vapor phase properties. These findings provide an improved understanding of the role of long-range interactions in machine learning models and the regimes where they are necessary.

49 citations


Journal ArticleDOI
TL;DR: In this paper, a machine learning model is used to simulate complex physicochemical phenomena with ab initio accuracy, including the phase equilibrium of water, hexagonal ice, and cubic ice, with an eye toward studying ice nucleation.
Abstract: Machine learning models are rapidly becoming widely used to simulate complex physicochemical phenomena with ab initio accuracy. Here, we use one such model as well as direct density functional theory (DFT) calculations to investigate the phase equilibrium of water, hexagonal ice (Ih), and cubic ice (Ic), with an eye toward studying ice nucleation. The machine learning model is based on deep neural networks and has been trained on DFT data obtained using the SCAN exchange and correlation functional. We use this model to drive enhanced sampling simulations aimed at calculating a number of complex properties that are out of reach of DFT-driven simulations and then employ an appropriate reweighting procedure to compute the corresponding properties for the SCAN functional. This approach allows us to calculate the melting temperature of both ice polymorphs, the driving force for nucleation, the heat of fusion, the densities at the melting temperature, the relative stability of ices Ih and Ic, and other properties. We find a correct qualitative prediction of all properties of interest. In some cases, quantitative agreement with experiment is better than for state-of-the-art semiempirical potentials for water. Our results also show that SCAN correctly predicts that ice Ih is more stable than ice Ic.

29 citations


Journal ArticleDOI
TL;DR: In this article, a new mechanism was introduced, based on charge density waves and non-symmorphic symmetry, to design an idealized Dirac semimetal, which is then shown experimentally that the antiferromagnetic compound GdSb0.46 Te1.48 is a nearly ideal Dirac semiimetal based on the proposed mechanism, meaning that most interfering bands at Fermi level are suppressed.
Abstract: New developments in the field of topological matter are often driven by materials discovery, including novel topological insulators, Dirac semimetals, and Weyl semimetals. In the last few years, large efforts have been made to classify all known inorganic materials with respect to their topology. Unfortunately, a large number of topological materials suffer from non-ideal band structures. For example, topological bands are frequently convoluted with trivial ones, and band structure features of interest can appear far below the Fermi level. This leaves just a handful of materials that are intensively studied. Finding strategies to design new topological materials is a solution. Here, a new mechanism is introduced, which is based on charge density waves and non-symmorphic symmetry, to design an idealized Dirac semimetal. It is then shown experimentally that the antiferromagnetic compound GdSb0.46 Te1.48 is a nearly ideal Dirac semimetal based on the proposed mechanism, meaning that most interfering bands at the Fermi level are suppressed. Its highly unusual transport behavior points to a thus far unknown regime, in which Dirac carriers with Fermi energy very close to the node seem to gradually localize in the presence of lattice and magnetic disorder.

23 citations


Posted Content
TL;DR: In this paper, the thermal conductivity of water within linear response theory from equilibrium molecular dynamics simulations is computed by adopting two different approaches: the potential energy surface (PES) is derived on the fly from the electronic ground state of density functional theory (DFT) and the corresponding analytical expression is used for the energy flux.
Abstract: We compute the thermal conductivity of water within linear response theory from equilibrium molecular dynamics simulations, by adopting two different approaches. In one, the potential energy surface (PES) is derived on the fly from the electronic ground state of density functional theory (DFT) and the corresponding analytical expression is used for the energy flux. In the other, the PES is represented by a deep neural network (DNN) trained on DFT data, whereby the PES has an explicit local decomposition and the energy flux takes a particularly simple expression. By virtue of a gauge invariance principle, established by Marcolongo, Umari, and Baroni, the two approaches should be equivalent if the PES were reproduced accurately by the DNN model. We test this hypothesis by calculating the thermal conductivity, at the GGA (PBE) level of theory, using the direct formulation and its DNN proxy, finding that both approaches yield the same conductivity, in excess of the experimental value by approximately 60%. Besides being numerically much more efficient than its direct DFT counterpart, the DNN scheme has the advantage of being easily applicable to more sophisticated DFT approximations, such as meta-GGA and hybrid functionals, for which it would be hard to derive analytically the expression of the energy flux. We find in this way, that a DNN model, trained on meta-GGA (SCAN) data, reduce the deviation from experiment of the predicted thermal conductivity by about 50%, leaving the question open as to whether the residual error is due to deficiencies of the functional, to a neglect of nuclear quantum effects in the atomic dynamics, or, likely, to a combination of the two.

14 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used molecular dynamics simulations of the realistic TIP4P/2005 model and found a striking signature of the liquid-liquid critical point in the structure of water glasses, manifested as a pronounced increase in long-range density fluctuations at pressures proximate to the critical pressure.
Abstract: Much attention has been devoted to water’s metastable phase behavior, including polyamorphism (multiple amorphous solid phases), and the hypothesized liquid-liquid transition and associated critical point. However, the possible relationship between these phenomena remains incompletely understood. Using molecular dynamics simulations of the realistic TIP4P/2005 model, we found a striking signature of the liquid-liquid critical point in the structure of water glasses, manifested as a pronounced increase in long-range density fluctuations at pressures proximate to the critical pressure. By contrast, these signatures were absent in glasses of two model systems that lack a critical point. We also characterized the departure from equilibrium upon vitrification via the non-equilibrium index; water-like systems exhibited a strong pressure dependence in this metric, whereas simple liquids did not. These results reflect a surprising relationship between the metastable equilibrium phenomenon of liquid-liquid criticality and the non-equilibrium structure of glassy water, with implications for our understanding of water phase behavior and glass physics. Our calculations suggest a possible experimental route to probing the existence of the liquid-liquid transition in water and other fluids. The subtle connections between water’s supercooled liquid and glassy states are difficult to characterize. Gartner et al. suggest with MD simulations that the long-range structure of glassy water may reflect signatures of water’s debated second critical point in the supercooled liquid.

9 citations


Journal ArticleDOI
TL;DR: In this paper, the formation of ice XI is kineti cally stable below 72 K, whereas ice Ih, the common form of ice in the biosphere, contains proton disorder.
Abstract: Ice Ih, the common form of ice in the biosphere, contains proton disorder. Its proton-ordered counterpart, ice XI, is thermodynamically stable below 72 K. However, the formation of ice XI is kineti...

5 citations


Journal ArticleDOI
TL;DR: In this article, the effect of doping in molecular dynamics simulations using a bias potential that enhances the formation of ionic defects is modeled using a machine learning potential trained with density functional theory data.
Abstract: Ice Ih, the common form of ice in the biosphere, contains proton disorder. Its proton-ordered counterpart, ice XI, is thermodynamically stable below 72 K. However, even below this temperature the formation of ice XI is kinetically hindered and experimentally it is obtained by doping ice with KOH. Doping creates ionic defects that promote the migration of protons and the associated change in proton configuration. In this article, we mimic the effect of doping in molecular dynamics simulations using a bias potential that enhances the formation of ionic defects. The recombination of the ions thus formed proceeds through fast migration of the hydroxide and results in the jump of protons along a hydrogen bond loop. This provides a physical and expedite way to change the proton configuration, and to accelerate diffusion in proton configuration space. A key ingredient of this approach is a machine learning potential trained with density functional theory data and capable of modeling molecular dissociation. We exemplify the usefulness of this idea by studying the order-disorder transition using an appropriate order parameter to distinguish the proton environments in ice Ih and XI. We calculate the changes in free energy, enthalpy, and entropy associated with the transition. Our estimated entropy agrees with experiment within the error bars of our calculation.

3 citations


Journal ArticleDOI
TL;DR: In this article, the authors used molecular dynamics simulations of the realistic TIP4P/2005 model to find a signature of the liquid-liquid critical point in the structure of water glasses, manifested as a pronounced increase in long-range density fluctuations at pressures proximate to the critical pressure.
Abstract: Much attention has been devoted to water's metastable phase behavior, including polyamorphism (multiple amorphous solid phases), and the hypothesized liquid-liquid transition and associated critical point. However, the possible relationship between these phenomena remains incompletely understood. Using molecular dynamics simulations of the realistic TIP4P/2005 model, we found a striking signature of the liquid-liquid critical point in the structure of water glasses, manifested as a pronounced increase in long-range density fluctuations at pressures proximate to the critical pressure. By contrast, these signatures were absent in glasses of two model systems that lack a critical point. We also characterized the departure from equilibrium upon vitrification via the non-equilibrium index; water-like systems exhibited a strong pressure dependence in this metric, whereas simple liquids did not. These results reflect a surprising relationship between the metastable equilibrium phenomenon of liquid-liquid criticality and the non-equilibrium structure of glassy water, with implications for our understanding of water phase behavior and glass physics. Our calculations suggest a possible experimental route to probing the existence of the liquid-liquid transition in water and other fluids.