scispace - formally typeset
Search or ask a question
Author

Roberto Car

Bio: Roberto Car is an academic researcher from Princeton University. The author has contributed to research in topics: Density functional theory & Ab initio. The author has an hindex of 99, co-authored 389 publications receiving 76681 citations. Previous affiliations of Roberto Car include International School for Advanced Studies & University of Geneva.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that WT-MetaD can be used to study the finite-size scaling behaviour of the free energy barrier separating the two liquids for systems containing 192, 300 and 400 ST2 molecules, and that larger systems must be examined to provide conclusive evidence of a first-order phase transition and associated second critical point.
Abstract: We investigate the metastable phase behaviour of the ST2 water model under deeply supercooled conditions. The phase behaviour is examined using umbrella sampling (US) and well-tempered metadynamics (WT-MetaD) simulations to compute the reversible free energy surface parameterized by density and bond-orientation order. We find that free energy surfaces computed with both techniques clearly show two liquid phases in coexistence, in agreement with our earlier US and grand canonical Monte Carlo calculations [Y. Liu, J. C. Palmer, A. Z. Panagiotopoulos and P. G. Debenedetti, J Chem Phys, 2012, 137, 214505; Y. Liu, A. Z. Panagiotopoulos and P. G. Debenedetti, J Chem Phys, 2009, 131, 104508]. While we demonstrate that US and WT-MetaD produce consistent results, the latter technique is estimated to be more computationally efficient by an order of magnitude. As a result, we show that WT-MetaD can be used to study the finite-size scaling behaviour of the free energy barrier separating the two liquids for systems containing 192, 300 and 400 ST2 molecules. Although our results are consistent with the expected N2/3 scaling law, we conclude that larger systems must be examined to provide conclusive evidence of a first-order phase transition and associated second critical point.

99 citations

Journal ArticleDOI
TL;DR: By engineering the Berry curvature in a Heusler magnet, it is possible to tune the anomalous Hall conductivity without affecting the material's magnetization as mentioned in this paper, which is a technique that has been successfully applied in the field of magnetization tuning.
Abstract: By engineering the Berry curvature in a Heusler magnet, it is possible to tune the anomalous Hall conductivity without affecting the material's magnetization.

95 citations

Journal ArticleDOI
TL;DR: The x-ray absorption spectra of water and ice are calculated with a many-body approach for electron-hole excitations with major short-range order effects due to breaking of hydrogen bonds and enhances the pre-edge intensity in the liquid.
Abstract: The x-ray absorption spectra of water and ice are calculated with a many-body approach for electron-hole excitations. The experimental features, including the effects of temperature change in the liquid, are reproduced from configurations generated by ab initio molecular dynamics. The spectral difference between the solid and the liquid is due to two major short-range order effects. One, due to breaking of hydrogen bonds, enhances the pre-edge intensity in the liquid. The other, due to a nonbonded molecular fraction in the first coordination shell, affects the main spectral edge in the conversion of ice to water. This effect may not involve hydrogen bond breaking as shown by experiment in high-density amorphous ice.

94 citations

Posted Content
TL;DR: A machine learning-based simulation protocol (Deep Potential Molecular Dynamics), while retaining {\it ab initio} accuracy, can simulate more than 1 nanosecond-long trajectory of over 100 million atoms per day, using a highly optimized code (GPU DeePMD-kit) on the Summit supercomputer.
Abstract: For 35 years, {\it ab initio} molecular dynamics (AIMD) has been the method of choice for modeling complex atomistic phenomena from first principles. However, most AIMD applications are limited by computational cost to systems with thousands of atoms at most. We report that a machine learning-based simulation protocol (Deep Potential Molecular Dynamics), while retaining {\it ab initio} accuracy, can simulate more than 1 nanosecond-long trajectory of over 100 million atoms per day, using a highly optimized code (GPU DeePMD-kit) on the Summit supercomputer. Our code can efficiently scale up to the entire Summit supercomputer, attaining $91$ PFLOPS in double precision ($45.5\%$ of the peak) and {$162$/$275$ PFLOPS in mixed-single/half precision}. The great accomplishment of this work is that it opens the door to simulating unprecedented size and time scales with {\it ab initio} accuracy. It also poses new challenges to the next-generation supercomputer for a better integration of machine learning and physical modeling.

94 citations

Journal ArticleDOI
TL;DR: In this article, structural properties of two models for the Si(001)-SiO2 interface were investigated, which derive from attaching tridymite, a crystalline form of SiO2, to Si(1) and then allowing for full relaxation.
Abstract: We present a first‐principles investigation of the structural properties of two models for the Si(001)–SiO2 interface The models derive from attaching tridymite, a crystalline form of SiO2, to Si(001), and then allowing for full relaxation These models do not show electronic states in the silicon gap, as required by electrical experiments They contain the three intermediate oxidation states of silicon, consistent with photoemission experiments We study bond length and bond angle distributions and measures of local strain The strain is localized to a transition region at the interface Strain does not persist in the full oxide

94 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.

47,666 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Abstract: QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

19,985 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The simulation allows us to study in detail the changes in the structure-property relationship through the metal-semiconductor transition, and a detailed analysis of the local structural properties and their changes induced by an annealing process is reported.
Abstract: We present ab initio quantum-mechanical molecular-dynamics simulations of the liquid-metal--amorphous-semiconductor transition in Ge. Our simulations are based on (a) finite-temperature density-functional theory of the one-electron states, (b) exact energy minimization and hence calculation of the exact Hellmann-Feynman forces after each molecular-dynamics step using preconditioned conjugate-gradient techniques, (c) accurate nonlocal pseudopotentials, and (d) Nos\'e dynamics for generating a canonical ensemble. This method gives perfect control of the adiabaticity of the electron-ion ensemble and allows us to perform simulations over more than 30 ps. The computer-generated ensemble describes the structural, dynamic, and electronic properties of liquid and amorphous Ge in very good agreement with experiment. The simulation allows us to study in detail the changes in the structure-property relationship through the metal-semiconductor transition. We report a detailed analysis of the local structural properties and their changes induced by an annealing process. The geometrical, bonding, and spectral properties of defects in the disordered tetrahedral network are investigated and compared with experiment.

16,744 citations