scispace - formally typeset
Search or ask a question
Author

Roberto Car

Bio: Roberto Car is an academic researcher from Princeton University. The author has contributed to research in topics: Density functional theory & Ab initio. The author has an hindex of 99, co-authored 389 publications receiving 76681 citations. Previous affiliations of Roberto Car include International School for Advanced Studies & University of Geneva.


Papers
More filters
01 Jan 2005
TL;DR: In this paper, an electronic-structure approach is used to derive macroscopic observables under the controlled condition of a "computational experiment" and with a predictive power rooted in the quantum-mechanical description of interacting atoms and electrons.
Abstract: Ab initio or first-principles methods have emerged in the last two decades as a powerful tool to probe the properties of matter at the microscopic scale. These approaches are used to derive macroscopic observables under the controlled condition of a “computational experiment,” and with a predictive power rooted in the quantum-mechanical description of interacting atoms and electrons. Density-functional theory (DFT) has become de facto the method of choice for most applications, due to its combination of reasonable scaling with system size and good accuracy in reproducing most ground state properties. Such an electronic-structure approach can then be combined with classical molecular dynamics to provide an accurate description of thermodynamic properties and phase stability, atomic dynamics, and chemical reactions, or as a tool to sample the features of a potential energy surface. In a molecular-dynamics (MD) simulation the microscopic trajectory of each individual atom in the system is determined by integration of Newton’s equations of motion. In classical MD, the system is considered composed of massive, point-like nuclei, with forces acting between them derived from empirical effective potentials. Ab initio MD maintains the same assumption of treating atomic nuclei as classical particles; however, the forces acting on them are considered quantum mechanical in nature, and are derived from an electronic-structure calculation. The approximation of treating quantummechanically only the electronic subsystem is usually perfectly appropriate, due to the large difference in mass between electrons and nuclei. Nevertheless, nuclear quantum effects can be sometimes relevant, especially for light

2 citations

Posted Content
01 Jan 2016
TL;DR: Lukas Muechler, A. Alexandradinata, Titus Neupert, and Roberto Car Department of Chemistry, Princeton University, Princeton, New Jersey 08544 as mentioned in this paper.
Abstract: Lukas Muechler, A. Alexandradinata, Titus Neupert, and Roberto Car Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA Department of Physics, Yale University, New Haven, Connecticut 06520, USA Department of Physics, Princeton University, Princeton, New Jersey 08544, USA Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA (Dated: May 18, 2016)

2 citations

Journal ArticleDOI
TL;DR: In this article, a first-principles molecular dynamics investigation of the atomic motion in Silicon in the presence of an artificially created vacancy at high temperature (T ≥ 1200 K) is presented.
Abstract: We report a first-principles Molecular Dynamics investigation of the atomic motion in Silicon in the presence of an artificially created vacancy at high temperature (T ≥ 1200 K). We observe that atomic diffusion events are affected by strong dynamical correlations. At temperatures close to the melting point we discover characteristic premelting phenomena which involve simultaneous jumps of several atoms and introduce a large amount of disorder in the structure.

2 citations

DatasetDOI
03 Dec 2020
TL;DR: The Globus dataset as mentioned in this paper is a large-scale dataset with more than 1.5 million data points and it can be accessed and downloaded via Globus at https://app.globus.org/file-manager?origin_id=dc43f461-0ca7-4203-848c-33a9fc00a464o sign-in is required.
Abstract: A full description of the structure of the dataset and how to reproduce the figures in the manuscript are given in the dataset README file. This dataset is too large to download directly from this item page. You can access and download the data via Globus at this link: https://app.globus.org/file-manager?origin_id=dc43f461-0ca7-4203-848c-33a9fc00a464o sign-in is required).

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.

47,666 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: QUANTUM ESPRESSO as discussed by the authors is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave).
Abstract: QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

19,985 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The simulation allows us to study in detail the changes in the structure-property relationship through the metal-semiconductor transition, and a detailed analysis of the local structural properties and their changes induced by an annealing process is reported.
Abstract: We present ab initio quantum-mechanical molecular-dynamics simulations of the liquid-metal--amorphous-semiconductor transition in Ge. Our simulations are based on (a) finite-temperature density-functional theory of the one-electron states, (b) exact energy minimization and hence calculation of the exact Hellmann-Feynman forces after each molecular-dynamics step using preconditioned conjugate-gradient techniques, (c) accurate nonlocal pseudopotentials, and (d) Nos\'e dynamics for generating a canonical ensemble. This method gives perfect control of the adiabaticity of the electron-ion ensemble and allows us to perform simulations over more than 30 ps. The computer-generated ensemble describes the structural, dynamic, and electronic properties of liquid and amorphous Ge in very good agreement with experiment. The simulation allows us to study in detail the changes in the structure-property relationship through the metal-semiconductor transition. We report a detailed analysis of the local structural properties and their changes induced by an annealing process. The geometrical, bonding, and spectral properties of defects in the disordered tetrahedral network are investigated and compared with experiment.

16,744 citations