scispace - formally typeset
Search or ask a question
Author

Roberto Cerri

Bio: Roberto Cerri is an academic researcher from University of Udine. The author has contributed to research in topics: Fish meal & Biology. The author has an hindex of 3, co-authored 5 publications receiving 35 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Support is provided to a reliable use of alternative/underexploited protein and lipid sources [(HM) or (PBM)] in developing a new generation of sustainable and healthy trout diets that meet the circular economy principles.

51 citations

Journal ArticleDOI
TL;DR: In this article, poultry by-products and Hermetia illucens meal were used to replace the vegetable protein fraction in diets totally deprived of fish meal intended for gilthead seabream (Sparus aurata).
Abstract: The attempt to replace marine-derived ingredients for aquafeed formulation with plant-derived ones has met some limitations due to their negative side effects on many fish species. In this context, finding new, sustainable ingredients able to promote fish welfare is currently under exploration. In the present study, poultry by-products and Hermetia illucens meal were used to replace the vegetable protein fraction in diets totally deprived of fish meal intended for gilthead seabream (Sparus aurata). After a 12-week feeding trial, a multidisciplinary approach including histological, molecular, and spectroscopic techniques was adopted to investigate intestine and liver responses to the different dietary formulations. Regardless of the alternative ingredient used, the reduction in dietary vegetable proteins resulted in a lower incidence of intestine histological alterations and inflammatory responses. In addition, the dietary inclusion of insect meal positively affected the reduction in the molecular inflammatory markers analyzed. Spectroscopic analyses showed that poultry by-product meal improved lipid absorption in the intestine, while insect meal induced increased liver lipid deposition in fish. The results obtained demonstrated that both poultry by-products and H. illucens meal can successfully be used to replace plant-derived ingredients in diets for gilthead seabream, promoting healthy aquaculture.

43 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared growth, gene expression involved in appetite regulation, physical characteristics, and chemical composition of Sparus aurata fed alternative protein sources, including Hermetia illucens pupae meal (H), poultry byproduct meal (PBM), red swamp crayfish meal (RC10), and from a blend (2:1, w:w) of Tisochrysis lutea and Tetraselmis suecica (MA10) dried biomasses.
Abstract: By answering the need for increasing sustainability in aquaculture, the present study aimed to compare growth, gene expression involved in appetite regulation, physical characteristics, and chemical composition of Sparus aurata fed alternative protein sources. Fish were fed ten iso-proteic, iso-lipidic, and isoenergetic diets: a vegetable-based (CV) and a marine ingredient-rich (CF) diet were set as control diets. The others were prepared by replacing graded levels (10, 20 or 40%) of the vegetable proteins in the CV with proteins from a commercial defatted Hermetia illucens pupae meal (H), poultry by-product meal (PBM) singly (H10, H20, H40, P20, P40) or in combination (H10P30), red swamp crayfish meal (RC10) and from a blend (2:1, w:w) of Tisochrysis lutea and Tetraselmis suecica (MA10) dried biomasses. The increase in ghre gene expression observed in MA10 fed fish matched with increased feed intake and increased feed conversion ratio. Besides, the MA10 diet conferred a lighter aspect to the fish skin (p < 0.05) than the others. Overall, no detrimental effects of H, PBM, and RC meal included in the diets were observed, and fish fatty acid profile resulted as comparable among these groups and CV, thus demonstrating the possibility to introduce H, PBM, and RC in partial replacement of vegetable proteins in the diet for Sparus aurata.

21 citations

Journal ArticleDOI
TL;DR: The digestibility results obtained with rainbow trout allowed ranking the MACBs into two major groups, and most can be considered as virtually good sources of minerals and trace elements and exhibit an essential amino acid profile comparable or even better than that of soybean meal commonly used in fish feeds with P. purpureum showing the best protein profile.

16 citations

Journal ArticleDOI
TL;DR: In this paper, a real-time PCR method based on the mitochondrial cytochrome b (CYB) gene is proposed for detecting the presence of Gryllodes sigillatus (GS) in feed and food.
Abstract: The production of insects on an industrial scale has attracted the attention of the research and agricultural industry as novel protein sources. To detect the presence of Gryllodes sigillatus (GS) in feed and food, a real-time PCR method based on the mitochondrial cytochrome b (CYB) gene is proposed by this study. Forty DNA samples of animal and plant origin were used to confirm the specificity of the qPCR system. The detection method’s performance was evaluated on different processed GS matrices including native GS (UnGS) and different commercial products: crunchy roasted samples (RoGS), insect meal mixtures (ACGS) and energetic snacks containing GS (GSS). Data on sequencing were aligned with the reference gene to confirm the PCR products. The regression curve (y = −3.394 x + 42.521; R2 = 0.994, d.f. 14) between Ct values and Log DNA concentrations of Gryllodes sigillatus resulted in an efficiency of 96.4%. The severity of the technological processing treatments and the matrix structure affected the intensity of the PCR signal with the same amount of insect DNA as observed by different y-intercepts of the three-regression lines for RoGS, ACGS, and GSS. The real-time PCR method resulted in robust and sensitive outcomes able to detect low amounts of GS DNA (5 g/100 g) in a complex matrix, making it suitable for detecting the presence or absence of labeled Gryllodes sigillatus material both in feed and food.

9 citations


Cited by
More filters
01 Jan 2016
TL;DR: In this paper, the authors presented an energy analysis of a 1-ha photobioreactors for the production of T. suecica at a cost of €12.4 kg−1 (dry weight).
Abstract: Abstract The objective of this techno-economic analysis (TEA) was to define the production cost of the microalga Tetraselmis suecica in a 1-ha plant made of “Green Wall Panel-II” (GWP®-II) photobioreactors. The study was based on an energy analysis carried out for a similar plant located in Tuscany (Italy) and considers the steps from inoculum preparation to the wet algal paste. Costs of equipment and materials were obtained from manufacturers and suppliers, while operating costs and output data (e.g. biomass composition and productivity) were collected during several years of trials at the Fotosintetica & Microbiologica S.r.l. facilities (Florence, Italy). Other data were obtained from Microalghe Camporosso S.r.l. (Imperia, Italy), where a commercial 1500-m2 GWP®-I plant is in operation and two 250-m2 GWP®-II modules were built and used in the framework of the EU project BIOFAT. This TEA shows that, given a productivity of 36 tonnes per hectare per year, T. suecica biomass can be produced at a cost of €12.4 kg− 1 (dry weight). Using conservative assumptions it was estimated that at the 100-ha scale the cost will be €5.1 kg− 1. Locating the plant in more favorable climatic conditions (e.g. in Tunisia) will allow reaching 54 tonnes per hectare annually and reducing cost to €6.2 kg− 1 at the 1-ha scale and to €3.2 kg− 1 at the 100-ha scale. The major cost factors are labor at 1-ha scale in Tuscany and capital expenses in all the other cases. This TEA confirms that microalgal technologies have high potential not only for high-value, but also for medium- and low-value products, while the production of biofuels, protein, food and feed seems currently out of reach. However, the global scenario of agriculture commodities is rapidly changing and other factors (e.g. sustainability), besides a pure economic evaluation, will assume greater importance in the future.

150 citations

23 Jul 2012
TL;DR: Understanding of salmon intestinal pathology is promoted and establishment of a model for feed induced enteritis is established and the intestinal pathology at the molecular level is described.
Abstract: BackgroundUse of plant ingredients in aquaculture feeds is impeded by high contents of antinutritional factors such as saponins, which may cause various pharmacological and biological effects. In this study, transcriptome changes were analyzed using a 21 k oligonucleotide microarray and qPCR in the distal intestine of Atlantic salmon fed diets based on five plant protein sources combined with soybean saponins.ResultsDiets with corn gluten, sunflower, rapeseed or horsebean produced minor effects while the combination of saponins with pea protein concentrate caused enteritis and major transcriptome changes. Acute inflammation was characterised by up-regulation of cytokines, NFkB and TNFalpha related genes and regulators of T-cell function, while the IFN-axis was suppressed. Induction of lectins, complement, metalloproteinases and the respiratory burst complex parallelled a down-regulation of genes for free radical scavengers and iron binding proteins. Marked down-regulation of xenobiotic metabolism was also observed, possibly increasing vulnerability of the intestinal tissue. A hallmark of metabolic changes was dramatic down-regulation of lipid, bile and steroid metabolism. Impairment of digestion was further suggested by expression changes of nutrient transporters and regulators of water balance (e.g. aquaporin, guanylin). On the other hand, microarray profiling revealed activation of multiple mucosal defence processes. Annexin-1, with important anti-inflammatory and gastroprotective properties, was markedly up-regulated. Furthermore, augmented synthesis of polyamines needed for cellular proliferation (up-regulation of arginase and ornithine decarboxylase) and increased mucus production (down-regulation of glycan turnover and goblet cell hyperplasia) could participate in mucosal healing and restoration of normal tissue function.ConclusionThe current study promoted understanding of salmon intestinal pathology and establishment of a model for feed induced enteritis. Multiple gene expression profiling further characterised the inflammation and described the intestinal pathology at the molecular level.Ethical approvalThe present experiment was approved by the Norwegian Animal Research Authority and conducted according to prevailing animal welfare regulations: FOR-1996-01-15-23 (Norway), European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes (Strasbourg, 18.III.1986) and COUNCIL DIRECTIVE of 24 November 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes (86/609/EEC).

77 citations

01 Jan 2013
TL;DR: In the upscaling scenarios, microalgae production for aquaculture purposes appeared to be more sustainable in resource use than a reference fish feed and the carbon footprint to decline by factor 20.
Abstract: The environmental sustainability of microalgae production for aquaculture purposes was analyzed using exergy analysis (EA) and life cycle assessment (LCA). A production process (pilot 2012, 240 m(2)) was assessed and compared with two upscaling scenarios (pilot 2013, 1320 m(2) and first production scale 2015, 2.5 ha). The EA at process level revealed that drying and cultivation had the lowest efficiencies. The LCA showed an improvement in resource efficiency after upscaling: 55.5 MJ(ex,CEENE)/MJ(ex) DW biomass was extracted from nature in 2012, which was reduced to 21.6 and 2.46 MJ(ex,CEENE)/MJ(ex) DW in the hypothetical 2013 and 2015 scenarios, respectively. Upscaling caused the carbon footprint to decline by factor 20 (0.09 kg CO2,eq/MJ(ex) DW in 2015). In the upscaling scenarios, microalgae production for aquaculture purposes appeared to be more sustainable in resource use than a reference fish feed (7.70 MJ(ex,CEENE) and 0.05 kg CO2,eq per MJ(ex) DW).

71 citations

Journal ArticleDOI
TL;DR: In this paper , the feasibility of using Hermetia illucens larval (BSFL) meal as an alternate protein source in aquaculture has been evaluated for feed, its sustainable production and challenges.

31 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the effect of Hermetia illucens meal (H) and poultry byproduct meal (P), singly (10, 30, 60% of either H or P) or in combination (10% H + 50% P, H10P50), as partial replacement of vegetable protein (VM) on gut microbiota (GM), inflammatory, and immune biomarkers.
Abstract: Sustainability of aquaculture is tied to the origin of feed ingredients. In search of sustainable fish meal-free formulations for rainbow trout, we evaluated the effect of Hermetia illucens meal (H) and poultry by-product meal (P), singly (10, 30, and 60% of either H or P) or in combination (10% H + 50% P, H10P50), as partial replacement of vegetable protein (VM) on gut microbiota (GM), inflammatory, and immune biomarkers. Fish fed the mixture H10P50 had the best growth performance. H, P, and especially the combination H10P50 partially restored α-diversity that was negatively affected by VM. Diets did not differ in the Firmicutes:Proteobacteria ratio, although the relative abundance of Gammaproteobacteria was reduced in H and was higher in P and in the fishmeal control. H had higher relative abundance of chitin-degrading Actinomyces and Bacillus, Dorea, and Enterococcus. Actinomyces was also higher in H feed, suggesting feed-chain microbiome transmission. P increased the relative abundance of protein degraders Paeniclostridium and Bacteroidales. IL-1β, IL-10, TGF-β, COX-2, and TCR-β gene expression in the midgut and head kidney and plasma lipopolysaccharide (LPS) revealed that the diets did not compromise the gut barrier function or induce inflammation. H, P, and H10P50 therefore appear valid protein sources in fishmeal-free aquafeeds.

30 citations