scispace - formally typeset
Search or ask a question
Author

Roberto Kolter

Bio: Roberto Kolter is an academic researcher from Harvard University. The author has contributed to research in topics: Biofilm & Bacillus subtilis. The author has an hindex of 120, co-authored 315 publications receiving 52942 citations. Previous affiliations of Roberto Kolter include University of California, Los Angeles & Boston Children's Hospital.
Topics: Biofilm, Bacillus subtilis, Plasmid, Gene, Population


Papers
More filters
Journal ArticleDOI
TL;DR: The results reviewed in this article indicate that the formation of biofilms serves as a new model system for the study of microbial development.
Abstract: ▪ Abstract Biofilms can be defined as communities of microorganisms attached to a surface. It is clear that microorganisms undergo profound changes during their transition from planktonic (free-swimming) organisms to cells that are part of a complex, surface-attached community. These changes are reflected in the new phenotypic characteristics developed by biofilm bacteria and occur in response to a variety of environmental signals. Recent genetic and molecular approaches used to study bacterial and fungal biofilms have identified genes and regulatory circuits important for initial cell-surface interactions, biofilm maturation, and the return of biofilm microorganisms to a planktonic mode of growth. Studies to date suggest that the planktonic-biofilm transition is a complex and highly regulated process. The results reviewed in this article indicate that the formation of biofilms serves as a new model system for the study of microbial development.

3,321 citations

Journal ArticleDOI
TL;DR: The isolation and characterization of mutants of Pseudomonas aeruginosa PA14 defective in the initiation of biofilm formation on an abiotic surface, polyvinylchloride (PVC) plastic are reported and evidence that microcolonies form by aggregation of cells present in the monolayer is presented.
Abstract: The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with a surface in response to appropriate environmental signals. We report the isolation and characterization of mutants of Pseudomonas aeruginosa PA14 defective in the initiation of biofilm formation on an abiotic surface, polyvinylchloride (PVC) plastic. These mutants are designated surface attachment defective (sad ). Two classes of sad mutants were analysed: (i) mutants defective in flagellar-mediated motility and (ii) mutants defective in biogenesis of the polar-localized type IV pili. We followed the development of the biofilm formed by the wild type over 8 h using phase-contrast microscopy. The wild-type strain first formed a monolayer of cells on the abiotic surface, followed by the appearance of microcolonies that were dispersed throughout the monolayer of cells. Using time-lapse microscopy, we present evidence that microcolonies form by aggregation of cells present in the monolayer. As observed with the wild type, strains with mutations in genes required for the synthesis of type IV pili formed a monolayer of cells on the PVC plastic. However, in contrast to the wild-type strain, the type IV pili mutants did not develop microcolonies over the course of the experiments, suggesting that these structures play an important role in microcolony formation. Very few cells of a non-motile strain (carrying a mutation in flgK) attached to PVC even after 8 h of incubation, suggesting a role for flagella and/or motility in the initial cell-to-surface interactions. The phenotype of these mutants thus allows us to initiate the dissection of the developmental pathway leading to biofilm formation.

2,712 citations

Journal ArticleDOI
TL;DR: The genetic analyses suggest that biofilm formation can proceed via multiple, convergent signalling pathways, which are regulated by various environmental signals, and that of the 24 sad mutants analysed in this study, only three had defects in genes of known function.
Abstract: Populations of surface-attached microorganisms comprising either single or multiple species are commonly referred to as biofilms. Using a simple assay for the initiation of biofilm formation (e.g. attachment to an abiotic surface) by Pseudomonas fluorescens strain WCS365, we have shown that: (i) P. fluorescens can form biofilms on an abiotic surface when grown on a range of nutrients; (ii) protein synthesis is required for the early events of biofilm formation; (iii) one (or more) extracytoplasmic protein plays a role in interactions with an abiotic surface; (iv) the osmolarity of the medium affects the ability of the cell to form biofilms. We have isolated transposon mutants defective for the initiation of biofilm formation, which we term surface attachment defective (sad). Molecular analysis of the sad mutants revealed that the ClpP protein (a component of the cytoplasmic Clp protease) participates in biofilm formation in this organism. Our genetic analyses suggest that biofilm formation can proceed via multiple, convergent signalling pathways, which are regulated by various environmental signals. Finally, of the 24 sad mutants analysed in this study, only three had defects in genes of known function. This result suggests that our screen is uncovering novel aspects of bacterial physiology.

2,439 citations

Journal ArticleDOI
TL;DR: It is demonstrated that E. coli forms biofilms on multiple abiotic surfaces in a nutrient‐dependent fashion and type I pili (harbouring the mannose‐specific adhesin, FimH) are required for initial surface attachment and thatMannose inhibits normal attachment.
Abstract: We have used Escherichia coli as a model system to investigate the initiation of biofilm formation. Here, we demonstrate that E. coli forms biofilms on multiple abiotic surfaces in a nutrient-dependent fashion. In addition, we have isolated insertion mutations that render this organism defective in biofilm formation. One-half of these mutations was found to perturb normal flagellar function. Using defined fli, flh, mot and che alleles, we show that motility, but not chemotaxis, is critical for normal biofilm formation. Microscopic analyses of these mutants suggest that motility is important for both initial interaction with the surface and for movement along the surface. In addition, we present evidence that type I pili (harbouring the mannose-specific adhesin, FimH) are required for initial surface attachment and that mannose inhibits normal attachment. In light of the observations presented here, a working model is discussed that describes the roles of both motility and type I pili in biofilm development.

1,618 citations

Journal ArticleDOI
TL;DR: This review discusses recent advances in the understanding of the extracellular matrix and its role in biofilm biology and describes how this contributes significantly to the organization of the community.

1,609 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
21 May 1999-Science
TL;DR: Improvements in understanding of the genetic and molecular basis of bacterial community behavior point to therapeutic targets that may provide a means for the control of biofilm infections.
Abstract: Bacteria that attach to surfaces aggregate in a hydrated polymeric matrix of their own synthesis to form biofilms. Formation of these sessile communities and their inherent resistance to antimicrobial agents are at the root of many persistent and chronic bacterial infections. Studies of biofilms have revealed differentiated, structured groups of cells with community properties. Recent advances in our understanding of the genetic and molecular basis of bacterial community behavior point to therapeutic targets that may provide a means for the control of biofilm infections.

11,162 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: The functions, properties and constituents of the EPS matrix that make biofilms the most successful forms of life on earth are described.
Abstract: The microorganisms in biofilms live in a self-produced matrix of hydrated extracellular polymeric substances (EPS) that form their immediate environment. EPS are mainly polysaccharides, proteins, nucleic acids and lipids; they provide the mechanical stability of biofilms, mediate their adhesion to surfaces and form a cohesive, three-dimensional polymer network that interconnects and transiently immobilizes biofilm cells. In addition, the biofilm matrix acts as an external digestive system by keeping extracellular enzymes close to the cells, enabling them to metabolize dissolved, colloidal and solid biopolymers. Here we describe the functions, properties and constituents of the EPS matrix that make biofilms the most successful forms of life on earth.

7,041 citations