scispace - formally typeset
Search or ask a question
Author

Roberto Pittau

Other affiliations: University of Edinburgh, CERN, Leiden University  ...read more
Bio: Roberto Pittau is an academic researcher from University of Granada. The author has contributed to research in topics: Quantum chromodynamics & Higgs boson. The author has an hindex of 59, co-authored 194 publications receiving 14995 citations. Previous affiliations of Roberto Pittau include University of Edinburgh & CERN.


Papers
More filters
Journal ArticleDOI
TL;DR: The ALPGEN as discussed by the authors event generator performs the calculation of exact matrix elements for a large set of parton-level processes of interest in the study of the Tevatron and LHC data.
Abstract: This paper presents a new event generator, ALPGEN, dedicated to the study of multiparton hard processes in hadronic collisions. The code performs, at the leading order in QCD and EW interactions, the calculation of the exact matrix elements for a large set of parton-level processes of interest in the study of the Tevatron and LHC data. The current version of the code describes the following final states: (W→f')Q+N jets (Q being a heavy quark, and f = l,q), with N ≤ 4;(Z/γ*→f)Q+N jets (f = l,ν), with N ≤ 4; W→f')+charm+N jets (f = l,q,N ≤ 5;W→f')+N jets (f = l,q and Z/γ*→f)+N jets (f = l,ν), with N ≤ 6; nW+mZ+lH+N jets, with n+m+l+N ≤ 8, N ≤ 3, including all 2-fermion decay modes of W and Z bosons, with spin correlations; Q+N jets, with t→bf' decays and relative spin correlations included where relevant, and N ≤ 6; QQ''+N jets, with Q and Q' heavy quarks (possibly equal) and N ≤ 4; HQ+N jets, with t→bf' decays and relative spin correlations included where relevant and N ≤ 4; N jets, with N ≤ 6. Parton-level events are generated, providing full information on their colour and flavour structure, enabling the evolution of the partons into fully hadronised final states.

1,828 citations

Journal ArticleDOI
TL;DR: The ALPGEN as discussed by the authors event generator is dedicated to the study of multiparton hard processes in hadronic collisions and performs the calculation of exact matrix elements for a large set of parton-level processes.
Abstract: This paper presents a new event generator, ALPGEN, dedicated to the study of multiparton hard processes in hadronic collisions. The code performs, at the leading order in QCD and EW interactions, the calculation of the exact matrix elements for a large set of parton-level processes of interest in the study of the Tevatron and LHC data. The current version of the code describes the following final states: (W -> ffbar') QQbar+ N jets (Q being a heavy quark, and f=l,q), with N f fbar)+QQbar+Njets (f=l,nu), with N ffbar') + charm + N jets (f=l,q), N f fbar') + N jets (f=l,q) and (Z/gamma* -> f fbar)+ N jets (f=l,nu), with N b f fbar' decays and relative spin correlations included if Q=t; Q Qbar Q' Qbar'+N jets, with Q and Q' heavy quarks (possibly equal) and N b f fbar' decays and relative spin correlations included if Q=t; N jets, with N<=6. Parton-level events are generated, providing full information on their colour and flavour structure, enabling the evolution of the partons into fully hadronised final states.

1,040 citations

Journal ArticleDOI
TL;DR: In this article, the coefficients of the 4-, 3-, 2-and 1-point one-loop integrals of arbitrary scattering processes are derived from the amplitude of the wavelet.

775 citations

Journal ArticleDOI
TL;DR: A program that implements the OPP reduction method to extract the coefficients of the one-loop scalar integrals from a user defined (sub)-amplitude or Feynman Diagram, as well as the rational terms coming from the 4-dimensional part of the numerator.
Abstract: We present a program that implements the OPP reduction method to extract the coefficients of the one-loop scalar integrals from a user defined (sub)-amplitude or Feynman Diagram, as well as the rational terms coming from the 4-dimensional part of the numerator. The rational pieces coming from the -dimensional part of the numerator are treated as an external input, and can be computed with the help of dedicated tree-level like Feynman rules. Possible numerical instabilities are dealt with the help of arbitrary precision routines, that activate only when needed.

541 citations

Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1491 moreInstitutions (239)
TL;DR: In this article, the authors present the second volume of the Future Circular Collider Conceptual Design Report, devoted to the electron-positron collider FCC-ee, and present the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan.
Abstract: In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics.

526 citations


Cited by
More filters
Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2964 moreInstitutions (200)
TL;DR: In this article, a search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10−9.

9,282 citations

Journal ArticleDOI
TL;DR: In this paper, results from searches for the standard model Higgs boson in proton-proton collisions at 7 and 8 TeV in the CMS experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.8 standard deviations.

8,857 citations

Journal ArticleDOI
TL;DR: MadGraph5 aMC@NLO as discussed by the authors is a computer program capable of handling all these computations, including parton-level fixed order, shower-matched, merged, in a unified framework whose defining features are flexibility, high level of parallelisation and human intervention limited to input physics quantities.
Abstract: We discuss the theoretical bases that underpin the automation of the computations of tree-level and next-to-leading order cross sections, of their matching to parton shower simulations, and of the merging of matched samples that differ by light-parton multiplicities. We present a computer program, MadGraph5 aMC@NLO, capable of handling all these computations — parton-level fixed order, shower-matched, merged — in a unified framework whose defining features are flexibility, high level of parallelisation, and human intervention limited to input physics quantities. We demonstrate the potential of the program by presenting selected phenomenological applications relevant to the LHC and to a 1-TeV e + e − collider. While next-to-leading order results are restricted to QCD corrections to SM processes in the first public version, we show that from the user viewpoint no changes have to be expected in the case of corrections due to any given renormalisable Lagrangian, and that the implementation of these are well under way.

6,509 citations