scispace - formally typeset
Search or ask a question

Showing papers by "Roberto Romero published in 2019"


Journal ArticleDOI
TL;DR: The quest to effectively predict PE in the first trimester of pregnancy is fueled by the desire to identify women who are at high risk of developing PE, so that necessary measures can be initiated early enough to improve placentation and thus prevent or at least reduce the frequency of its occurrence.

475 citations



Journal ArticleDOI
12 Dec 2019-eLife
TL;DR: A catalogue of cell types and transcriptional profiles in the human placenta is provided, shedding light on the molecular underpinnings and non-invasive prediction of the physiologic and pathologic parturition.
Abstract: More than 135 million births occur each year; yet, the molecular underpinnings of human parturition in gestational tissues, and in particular the placenta, are still poorly understood. The placenta is a complex heterogeneous organ including cells of both maternal and fetal origin, and insults that disrupt the maternal-fetal dialogue could result in adverse pregnancy outcomes such as preterm birth. There is limited knowledge of the cell type composition and transcriptional activity of the placenta and its compartments during physiologic and pathologic parturition. To fill this knowledge gap, we used scRNA-seq to profile the placental villous tree, basal plate, and chorioamniotic membranes of women with or without labor at term and those with preterm labor. Significant differences in cell type composition and transcriptional profiles were found among placental compartments and across study groups. For the first time, two cell types were identified: 1) lymphatic endothelial decidual cells in the chorioamniotic membranes, and 2) non-proliferative interstitial cytotrophoblasts in the placental villi. Maternal macrophages from the chorioamniotic membranes displayed the largest differences in gene expression (e.g. NFKB1) in both processes of labor; yet, specific gene expression changes were also detected in preterm labor. Importantly, several placental scRNA-seq transcriptional signatures were modulated with advancing gestation in the maternal circulation, and specific immune cell type signatures were increased with labor at term (NK-cell and activated T-cell signatures) and with preterm labor (macrophage, monocyte, and activated T-cell signatures). Herein, we provide a catalogue of cell types and transcriptional profiles in the human placenta, shedding light on the molecular underpinnings and non-invasive prediction of the physiologic and pathologic parturition.

151 citations


Journal ArticleDOI
TL;DR: Findings indicate that ascension from the lower genital tract is the primary pathway for intra-amniotic infection.
Abstract: Background Microbial invasion of the amniotic cavity resulting in intra-amniotic infection is associated with obstetrical complications such as preterm labor with intact or ruptured membranes, cervical insufficiency, as well as clinical and histological chorioamnionitis. The most widely accepted pathway for intra-amniotic infection is the ascension of microorganisms from the lower genital tract. However, hematogenous dissemination of microorganisms from the oral cavity or intestine, retrograde seeding from the peritoneal cavity through the fallopian tubes, and introduction through invasive medical procedures have also been suggested as potential pathways for intra-amniotic infection. The primary reason that an ascending pathway is viewed as most common is that the microorganisms most often detected in the amniotic fluid are those that are typical inhabitants of the vagina. However, thus far, no studies have shown that microorganisms in the amniotic cavity are simultaneously present in the vagina of the woman from which they were isolated. The objective of the study was to determine the frequency with which microorganisms isolated from women with intra-amniotic infection are also present in the lower genital tract. Methods This was a cross-sectional study of women with intra-amniotic infection with intact membranes. Intra-amniotic infection was defined as a positive culture and elevated concentrations of interleukin-6 (IL-6) (>2.6 ng/mL) in amniotic fluid and/or acute histologic chorioamnionitis and funisitis. Microorganisms isolated from bacterial cultures of amniotic fluid were taxonomically identified through matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) and 16S ribosomal RNA (rRNA) gene sequencing. Vaginal swabs were obtained at the time of amniocentesis for the identification of microorganisms in the lower genital tract. The overall bacterial profiles of amniotic fluids and vaginal swabs were characterized through 16S rRNA gene sequencing. The bacterial profiles of vaginal swabs were interrogated for the presence of bacteria cultured from amniotic fluid and for the presence of prominent (>1% average relative abundance) operational taxonomic units (OTUs) within the overall 16S rRNA gene bacterial profiles of amniotic fluid. Results (1) A total of 75% (6/8) of women had bacteria cultured from their amniotic fluid that are typical residents of the vaginal ecosystem. (2) A total of 62.5% (5/8) of women with bacteria cultured from their amniotic fluid also had these bacteria present in their vagina. (3) The microorganisms cultured from amniotic fluid and also detected in the vagina were Ureaplasma urealyticum, Escherichia coli, and Streptococcus agalactiae. (4) 16S rRNA gene sequencing revealed that the amniotic fluid of women with intra-amniotic infection had bacterial profiles dominated by Sneathia, Ureaplasma, Prevotella, Lactobacillus, Escherichia, Gardnerella, Peptostreptococcus, Peptoniphilus, and Streptococcus, many of which had not been cultured from the amniotic fluid samples. (5) Seventy percent (7/10) of the prominent (>1% average relative abundance) OTUs found in amniotic fluid were also prominent in the vagina. Conclusion The majority of women with intra-amniotic infection had bacteria cultured from their amniotic fluid that were typical vaginal commensals, and these bacteria were detected within the vagina at the time of amniocentesis. Molecular microbiological interrogation of amniotic fluid from women with intra-amniotic infection revealed that the bacterial profiles of amniotic fluid were largely consistent with those of the vagina. These findings indicate that ascension from the lower genital tract is the primary pathway for intra-amniotic infection.

105 citations


Journal ArticleDOI
TL;DR: If there is a microbiota in the middle endometrium, it is not dominated by Lactobacillus as was previously concluded, yet further investigation using culture and microscopy is necessary.
Abstract: Recent molecular studies concluded that the endometrium has a resident microbiota dominated by Lactobacillus spp. and is therefore similar to that of the vagina. These findings were largely derived from endometrial samples obtained through a transcervical catheter and thus prone to contamination. Herein, we investigated the molecular microbial profiles of mid-endometrial samples obtained through hysterectomy and compared them with those of the cervix, vagina, rectum, oral cavity, and controls for background DNA contamination. Microbial profiles were examined through 16S rRNA gene qPCR and sequencing. Universal bacterial qPCR of total 16S rDNA revealed a bacterial load exceeding that of background DNA controls in the endometrium of 60% (15/25) of the study subjects. Bacterial profiles of the endometrium differed from those of the oral cavity, rectum, vagina, and background DNA controls, but not of the cervix. The bacterial profiles of the endometrium and cervix were dominated by Acinetobacter, Pseudomonas, Cloacibacterium, and Comamonadaceae. Both 16S rRNA gene sequencing and Lactobacillus species-specific (L. iners & L crispatus) qPCR showed that Lactobacillus was rare in the endometrium. In conclusion, if there is a microbiota in the middle endometrium, it is not dominated by Lactobacillus as was previously concluded, yet further investigation using culture and microscopy is necessary.

96 citations


Journal ArticleDOI
TL;DR: Eradication of intra-amniotic infection/inflammation after treatment with antibiotics was confirmed in 79% of patients with preterm labor, intact membranes, and intra-amnesty infection/ inflammation who had a follow-up amniocentesis.

95 citations


Journal ArticleDOI
TL;DR: Findings provide mechanistic evidence showing that effector and activated T cells cause pathological inflammation at the maternal-fetal interface, in the mother, and in the fetus, inducing preterm labor and birth and adverse neonatal outcomes.
Abstract: Preterm labor commonly precedes preterm birth, the leading cause of perinatal morbidity and mortality worldwide. Most research has focused on establishing a causal link between innate immune activation and pathological inflammation leading to preterm labor and birth. However, the role of maternal effector/activated T cells in the pathogenesis of preterm labor/birth is poorly understood. In this study, we first demonstrated that effector memory and activated maternal T cells expressing granzyme B and perforin are enriched at the maternal-fetal interface (decidua) of women with spontaneous preterm labor. Next, using a murine model, we reported that prior to inducing preterm birth, in vivo T cell activation caused maternal hypothermia, bradycardia, systemic inflammation, cervical dilation, intra-amniotic inflammation, and fetal growth restriction, all of which are clinical signs associated with preterm labor. In vivo T cell activation also induced B cell cytokine responses, a proinflammatory macrophage polarization, and other inflammatory responses at the maternal-fetal interface and myometrium in the absence of an increased influx of neutrophils. Finally, we showed that treatment with progesterone can serve as a strategy to prevent preterm labor/birth and adverse neonatal outcomes by attenuating the proinflammatory responses at the maternal-fetal interface and cervix induced by T cell activation. Collectively, these findings provide mechanistic evidence showing that effector and activated T cells cause pathological inflammation at the maternal-fetal interface, in the mother, and in the fetus, inducing preterm labor and birth and adverse neonatal outcomes. Such adverse effects can be prevented by treatment with progesterone, a clinically approved strategy.

90 citations


Journal ArticleDOI
TL;DR: In patients with cervical insufficiency and intra-amniotic infection/inflammation, administration of antibiotics was followed by resolution of the intra-emniotic inflammatory process or intra-ammiotic infection in 75% of patients and was associated with treatment success in about 60% of cases.

88 citations


Posted ContentDOI
19 Aug 2019-bioRxiv
TL;DR: A catalogue of cell types and transcriptional profiles in the human placenta is provided, shedding light on the molecular underpinnings and non-invasive prediction of the physiologic and pathologic parturition.
Abstract: More than 135 million births occur each year; yet, the molecular underpinnings of human parturition in gestational tissues, and in particular the placenta, are still poorly understood. The placenta is a complex heterogeneous organ including cells of both maternal and fetal origin, and insults that disrupt the maternal-fetal dialogue could result in adverse pregnancy outcomes such as preterm birth. There is limited knowledge of the cell type composition and transcriptional activity of the placenta and its compartments during physiologic and pathologic parturition. To fill this knowledge gap, we used scRNA-seq to profile the placental villous tree, basal plate, and chorioamniotic membranes of women with or without labor at term and those with preterm labor. Significant differences in cell type composition and transcriptional profiles were found among placental compartments and across study groups. For the first time, two cell types were identified: 1) lymphatic endothelial decidual cells in the chorioamniotic membranes, and 2) non-proliferative interstitial cytotrophoblasts in the placental villi. Maternal macrophages from the chorioamniotic membranes displayed the largest differences in gene expression (e.g. NFKB1) in both processes of labor; yet, specific gene expression changes were also detected in preterm labor. Importantly, several placental scRNA-seq transcriptional signatures were modulated with advancing gestation in the maternal circulation, and specific immune cell type signatures were increased with labor at term (NK-cell and activated T-cell) and with preterm labor (macrophage, monocyte, and activated T-cell). Herein, we provide a catalogue of cell types and transcriptional profiles in the human placenta, shedding light on the molecular underpinnings and non-invasive prediction of the physiologic and pathologic parturition.

87 citations


Journal ArticleDOI
TL;DR: Evidence suggests that inhibition of the NLRP3 inflammasome or its downstream mediators may foster the development of novel anti-inflammatory therapies for the prevention or treatment of pregnancy complications.
Abstract: Inflammasomes are cytoplasmic multiprotein complexes that coordinate inflammatory responses, including those that take place during pregnancy. Inflammasomes and their downstream mediators caspase-1 and IL-1β are expressed by gestational tissues (e.g., the placenta and chorioamniotic membranes) during normal pregnancy. Yet, only the activation of the NLRP3 inflammasome in the chorioamniotic membranes has been partially implicated in the sterile inflammatory process of term parturition. In vivo and ex vivo studies have consistently shown that the activation of the NLRP3 inflammasome is a mechanism whereby preterm labor and birth occur in the context of microbial- or alarmin-induced inflammation. In the placenta, the activation of the NLRP3 inflammasome is involved in the pathogenesis of preeclampsia and other pregnancy syndromes associated with placental inflammation. This evidence suggests that inhibition of the NLRP3 inflammasome or its downstream mediators may foster the development of novel anti-inflammatory therapies for the prevention or treatment of pregnancy complications.

86 citations


Journal ArticleDOI
04 Jun 2019-PLOS ONE
TL;DR: A catalogue of proteome changes in maternal plasma proteome that precede the diagnosis of preeclampsia and can distinguish among early and late phenotypes is presented.
Abstract: Objectives To identify maternal plasma protein markers for early preeclampsia (delivery <34 weeks of gestation) and to determine whether the prediction performance is affected by disease severity and presence of placental lesions consistent with maternal vascular malperfusion (MVM) among cases. Study design This longitudinal case-control study included 90 patients with a normal pregnancy and 33 patients with early preeclampsia. Two to six maternal plasma samples were collected throughout gestation from each woman. The abundance of 1,125 proteins was measured using high-affinity aptamer-based proteomic assays, and data were modeled using linear mixed-effects models. After data transformation into multiples of the mean values for gestational age, parsimonious linear discriminant analysis risk models were fit for each gestational-age interval (8–16, 16.1–22, 22.1–28, 28.1–32 weeks). Proteomic profiles of early preeclampsia cases were also compared to those of a combined set of controls and late preeclampsia cases (n = 76) reported previously. Prediction performance was estimated via bootstrap. Results We found that 1) multi-protein models at 16.1–22 weeks of gestation predicted early preeclampsia with a sensitivity of 71% at a false-positive rate (FPR) of 10%. High abundance of matrix metalloproteinase-7 and glycoprotein IIbIIIa complex were the most reliable predictors at this gestational age; 2) at 22.1–28 weeks of gestation, lower abundance of placental growth factor (PlGF) and vascular endothelial growth factor A, isoform 121 (VEGF-121), as well as elevated sialic acid binding immunoglobulin-like lectin 6 (siglec-6) and activin-A, were the best predictors of the subsequent development of early preeclampsia (81% sensitivity, FPR = 10%); 3) at 28.1–32 weeks of gestation, the sensitivity of multi-protein models was 85% (FPR = 10%) with the best predictors being activated leukocyte cell adhesion molecule, siglec-6, and VEGF-121; 4) the increase in siglec-6, activin-A, and VEGF-121 at 22.1–28 weeks of gestation differentiated women who subsequently developed early preeclampsia from those who had a normal pregnancy or developed late preeclampsia (sensitivity 77%, FPR = 10%); 5) the sensitivity of risk models was higher for early preeclampsia with placental MVM lesions than for the entire early preeclampsia group (90% versus 71% at 16.1–22 weeks; 87% versus 81% at 22.1–28 weeks; and 90% versus 85% at 28.1–32 weeks, all FPR = 10%); and 6) the sensitivity of prediction models was higher for severe early preeclampsia than for the entire early preeclampsia group (84% versus 71% at 16.1–22 weeks). Conclusion We have presented herein a catalogue of proteome changes in maternal plasma proteome that precede the diagnosis of preeclampsia and can distinguish among early and late phenotypes. The sensitivity of maternal plasma protein models for early preeclampsia is higher in women with underlying vascular placental disease and in those with a severe phenotype.

Journal ArticleDOI
TL;DR: Evaluating the network topography of normative functional network development during connectome genesis in utero provides a basis for understanding how the prenatal period shapes future brain function and disease dysfunction.
Abstract: Large-scale functional connectome formation and reorganization is apparent in the second trimester of pregnancy, making it a crucial and vulnerable time window in connectome development. Here we identified which architectural principles of functional connectome organization are initiated before birth, and contrast those with topological characteristics observed in the mature adult brain. A sample of 105 pregnant women participated in human fetal resting-state fMRI studies (fetal gestational age between 20 and 40 weeks). Connectome analysis was used to analyze weighted network characteristics of fetal macroscale brain wiring. We identified efficient network attributes, common functional modules, and high overlap between the fetal and adult brain network. Our results indicate that key features of the functional connectome are present in the second and third trimesters of pregnancy. Understanding the organizational principles of fetal connectome organization may bring opportunities to develop markers for early detection of alterations of brain function.SIGNIFICANCE STATEMENT The fetal to neonatal period is well known as a critical stage in brain development. Rapid neurodevelopmental processes establish key functional neural circuits of the human brain. Prenatal risk factors may interfere with early trajectories of connectome formation and thereby shape future health outcomes. Recent advances in MRI have made it possible to examine fetal brain functional connectivity. In this study, we evaluate the network topography of normative functional network development during connectome genesis in utero Understanding the developmental trajectory of brain connectivity provides a basis for understanding how the prenatal period shapes future brain function and disease dysfunction.

Journal ArticleDOI
TL;DR: A causal link between NLRP3 inflammasome activation and spontaneous preterm labor and birth in the context of intra-amniotic inflammation is provided and adverse pregnancy and neonatal outcomes can be significantly reduced.
Abstract: Intra-amniotic inflammation is strongly associated with spontaneous preterm labor and birth, the leading cause of perinatal mortality and morbidity worldwide. Previous studies have suggested a role for the NLRP3 (NLR family pyrin domain-containing protein 3) inflammasome in the mechanisms that lead to preterm labor and birth. However, a causal link between the NLRP3 inflammasome and preterm labor/birth induced by intra-amniotic inflammation has not been established. Herein, using an animal model of lipopolysaccharide-induced intra-amniotic inflammation (IAI), we demonstrated that there was priming of the NLRP3 inflammasome (1) at the transcriptional level, indicated by enhanced mRNA expression of inflammasome-related genes (Nlrp3, Casp1, Il1b); and (2) at the protein level, indicated by greater protein concentrations of NLRP3, in both the fetal membranes and decidua basalis prior to preterm birth. Additionally, we showed that there was canonical activation of the NLRP3 inflammasome in the fetal membranes, but not in the decidua basalis, prior to IAI-induced preterm birth as evidenced by increased protein levels of active caspase-1. Protein concentrations of released IL1β were also increased in both the fetal membranes and decidua basalis, as well as in the amniotic fluid, prior to IAI-induced preterm birth. Finally, using the specific NLRP3 inhibitor, MCC950, we showed that in vivo inhibition of the NLRP3 inflammasome reduced IAI-induced preterm birth and neonatal mortality. Collectively, these results provide a causal link between NLRP3 inflammasome activation and spontaneous preterm labor and birth in the context of intra-amniotic inflammation. We also showed that, by targeting the NLRP3 inflammasome, adverse pregnancy and neonatal outcomes can be significantly reduced.

Journal ArticleDOI
TL;DR: Evidence is provided that the alarmin S100B can induce sterile intra-amniotic inflammation, preterm labor/birth, and adverse neonatal outcomes by activating the NLRP3 inflammasome, which can be prevented by inhibiting such a pathway.
Abstract: Sterile intra-amniotic inflammation is commonly observed in patients with spontaneous preterm labor, a syndrome that commonly precedes preterm birth, the leading cause of perinatal morbidity and mortality worldwide. However, the mechanisms leading to sterile intra-amniotic inflammation are poorly understood and no treatment exists for this clinical condition. Herein, we investigated whether the alarmin S100B could induce sterile intra-amniotic inflammation by activating the NLRP3 inflammasome, and whether the inhibition of this pathway could prevent preterm labor/birth and adverse neonatal outcomes. We found that the ultrasound-guided intra-amniotic administration of S100B induced a 50% rate of preterm labor/birth and a high rate of neonatal mortality (59.7%) without altering the fetal and placental weights. Using a multiplex cytokine array and immunoblotting, we reported that S100B caused a proinflammatory response in the amniotic cavity and induced the activation of the NLRP3 inflammasome in the fetal membranes, indicated by the upregulation of the NLRP3 protein and increased release of active caspase-1 and mature IL-1β. Inhibition of the NLRP3 inflammasome via the specific inhibitor MCC950 prevented preterm labor/birth by 35.7% and reduced neonatal mortality by 26.7%. Yet, inhibition of the NLRP3 inflammasome at term did not drastically obstruct the physiological process of parturition. In conclusion, the data presented herein indicate that the alarmin S100B can induce sterile intra-amniotic inflammation, preterm labor/birth, and adverse neonatal outcomes by activating the NLRP3 inflammasome, which can be prevented by inhibiting such a pathway. These findings provide evidence that sterile intra-amniotic inflammation could be treated by targeting the NLRP3 inflammasome.


Journal ArticleDOI
TL;DR: It is confirmed for the first time that network FC differs with sex in utero, and 16 distinct fetal FC networks were identified using a community detection algorithm.

Journal ArticleDOI
TL;DR: Results show that Gal-13 and Gal-14 already provide an immunoprivileged environment at the maternal-fetal interface during early pregnancy, and their reduced expression is related to miscarriages.
Abstract: Galectins are potent immunomodulators that regulate maternal immune responses in pregnancy and prevent the rejection of the semi-allogeneic fetus that also occurs in miscarriages. We previously identified a gene cluster on Chromosome 19 that expresses a subfamily of galectins, including galectin-13 (Gal-13) and galectin-14 (Gal-14), which emerged in anthropoid primates. These galectins are expressed only by the placenta and induce the apoptosis of activated T lymphocytes, possibly contributing to a shifted maternal immune balance in pregnancy. The placental expression of Gal-13 and Gal-14 is decreased in preeclampsia, a life-threatening obstetrical syndrome partly attributed to maternal anti-fetal rejection. This study is aimed at revealing the effects of Gal-13 and Gal-14 on T cell functions and comparing the expression of these galectins in placentas from healthy pregnancies and miscarriages. First-trimester placentas were collected from miscarriages and elective termination of pregnancies, tissue microarrays were constructed, and then the expression of Gal-13 and Gal-14 was analyzed by immunohistochemistry and immunoscoring. Recombinant Gal-13 and Gal-14 were expressed and purified, and their effects were investigated on primary peripheral blood T cells. The binding of Gal-13 and Gal-14 to T cells and the effects of these galectins on apoptosis, activation marker (CD25, CD71, CD95, HLA-DR) expression and cytokine (IL-1β, IL-6, IL-8, IL-10, IFNγ) production of T cells were examined by flow cytometry. Gal-13 and Gal-14 are primarily expressed by the syncytiotrophoblast at the maternal-fetal interface in the first trimester, and their placental expression is decreased in miscarriages compared to first-trimester controls. Recombinant Gal-13 and Gal-14 bind to T cells in a population- and activation-dependent manner. Gal-13 and Gal-14 induce apoptosis of Th and Tc cell populations, regardless of their activation status. Out of the investigated activation markers, Gal-14 decreases the cell surface expression of CD71, Gal-13 increases the expression of CD25, and both galectins increase the expression of CD95 on T cells. Non-activated T cells produce larger amounts of IL-8 in the presence of Gal-13 or Gal-14. In conclusion, these results show that Gal-13 and Gal-14 already provide an immunoprivileged environment at the maternal-fetal interface during early pregnancy, and their reduced expression is related to miscarriages.

Journal ArticleDOI
TL;DR: Preterm birth is commonly preceded by preterm labor, a syndrome that is causally linked to both intra‐amniotic infection and intra-amniotic inflammation, but the stereotypical cellular immune responses in these two clinical conditions are poorly understood.
Abstract: PROBLEM Preterm birth is commonly preceded by preterm labor, a syndrome that is causally linked to both intra-amniotic infection and intra-amniotic inflammation. However, the stereotypical cellular immune responses in these two clinical conditions are poorly understood. METHOD OF STUDY Amniotic fluid samples (n = 26) were collected from women diagnosed with preterm labor and intra-amniotic infection (amniotic fluid IL-6 concentrations ≥2.6 ng/mL and culturable microorganisms, n = 10) or intra-amniotic inflammation (amniotic fluid IL-6 concentrations ≥2.6 ng/mL without culturable microorganisms, n = 16). Flow cytometry was performed to evaluate the phenotype and number of amniotic fluid leukocytes. Amniotic fluid concentrations of classical pro-inflammatory cytokines, type 1 and type 2 cytokines, and T-cell chemokines were determined using immunoassays. RESULTS Women with spontaneous preterm labor and intra-amniotic infection had (a) a greater number of total leukocytes, including neutrophils and monocytes/macrophages, in amniotic fluid; (b) a higher number of total T cells and CD4+ T cells, but not CD8+ T cells or B cells, in amniotic fluid; and (c) increased amniotic fluid concentrations of IL-6, IL-1β, and IL-10, compared to those with intra-amniotic inflammation. However, no differences in amniotic fluid concentrations of T-cell cytokines and chemokines were observed between these two clinical conditions. CONCLUSION The cellular immune responses observed in women with preterm labor and intra-amniotic infection are more severe than in those with intra-amniotic inflammation, and neutrophils, monocytes/macrophages, and CD4+ T cells are the main immune cells responding to microorganisms that invade the amniotic cavity. These findings provide insights into the intra-amniotic immune mechanisms underlying the human syndrome of preterm labor.

Journal ArticleDOI
TL;DR: Unique changes in immune-related genes were discovered by longitudinally assessing the cellular transcriptome in the maternal circulation throughout normal pregnancy, and positive correlations were noted between the Cellular transcriptome and plasma proteome for specific genes/proteins.
Abstract: Pregnancy represents a unique immunological state in which the mother adapts to tolerate the semi-allogenic conceptus; yet, the cellular dynamics in the maternal circulation are poorly understood. Using exon-level expression profiling of up to six longitudinal whole blood samples from 49 pregnant women, we undertook a systems biology analysis of the cellular transcriptome dynamics and its correlation with the plasma proteome. We found that: (1) chromosome 14 was the most enriched in transcripts differentially expressed throughout normal pregnancy; (2) the strongest expression changes followed three distinct longitudinal patterns, with genes related to host immune response (e.g., MMP8, DEFA1B, DEFA4, and LTF) showing a steady increase in expression from 10 to 40 weeks of gestation; (3) multiple biological processes and pathways related to immunity and inflammation were modulated during gestation; (4) genes changing with gestation were among those specific to T cells, B cells, CD71+ erythroid cells, natural killer cells, and endothelial cells, as defined based on the GNF Gene Expression Atlas; (5) the average expression of mRNA signatures of T cells, B cells, and erythroid cells followed unique patterns during gestation; (6) the correlation between mRNA and protein abundance was higher for mRNAs that were differentially expressed throughout gestation than for those that were not, and significant mRNA-protein correlations were observed for genes part of the T-cell signature. In summary, unique changes in immune-related genes were discovered by longitudinally assessing the cellular transcriptome in the maternal circulation throughout normal pregnancy, and positive correlations were noted between the cellular transcriptome and plasma proteome for specific genes/proteins. These findings provide insights into the immunobiology of normal pregnancy.

Journal ArticleDOI
TL;DR: Sequencing-based techniques are more suitable to quantify whole-blood gene expression compared to microarrays, as they have an expanded dynamic range and identify more true positives.
Abstract: Development of maternal blood transcriptomic markers to monitor placental function and risk of obstetrical complications throughout pregnancy requires accurate quantification of gene expression. Herein, we benchmark three state-of-the-art expression profiling techniques to assess in maternal circulation the expression of cell type-specific gene sets previously discovered by single-cell genomics studies of the placenta. We compared Affymetrix Human Transcriptome Arrays, Illumina RNA-Seq, and sequencing-based targeted expression profiling (DriverMapTM) to assess transcriptomic changes with gestational age and labor status at term, and tested 86 candidate genes by qRT-PCR. DriverMap identified twice as many significant genes (q < 0.1) than RNA-Seq and five times more than microarrays. The gap in the number of significant genes remained when testing only protein-coding genes detected by all platforms. qRT-PCR validation statistics (PPV and AUC) were high and similar among platforms, yet dynamic ranges were higher for sequencing based platforms than microarrays. DriverMap provided the strongest evidence for the association of B-cell and T-cell gene signatures with gestational age, while the T-cell expression was increased with spontaneous labor at term according to all three platforms. We concluded that sequencing-based techniques are more suitable to quantify whole-blood gene expression compared to microarrays, as they have an expanded dynamic range and identify more true positives. Targeted expression profiling achieved higher coverage of protein-coding genes with fewer total sequenced reads, and it is especially suited to track cell type-specific signatures discovered in the placenta. The T-cell gene expression signature was increased in women who underwent spontaneous labor at term, mimicking immunological processes at the maternal-fetal interface and placenta.

Journal ArticleDOI
TL;DR: The intra-amniotic inflammatory response, either induced by alarmins or microbes, is characterized by the activation of the inflammasome – as evidenced by elevated amniotic fluid concentrations of extracellular ASC – in women with clinical chorioamnionitis at term.
Abstract: Background The inflammasome has been implicated in the mechanisms that lead to spontaneous labor at term. However, whether the inflammasome is activated in the amniotic cavity of women with clinical chorioamnionitis at term is unknown. Herein, by measuring extracellular ASC [apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (CARD)], we investigated whether there is in vivo inflammasome activation in amniotic fluid of patients with clinical chorioamnionitis at term with sterile intra-amniotic inflammation and in those with intra-amniotic infection. Methods This was a retrospective cross-sectional study that included amniotic fluid samples collected from 76 women who delivered after spontaneous term labor with diagnosed clinical chorioamnionitis. Intra-amniotic inflammation was defined as an elevated amniotic fluid interleukin (IL)-6 concentration ≥2.6 ng/mL, and intra-amniotic infection was diagnosed by the presence of microbial invasion of the amniotic cavity (MIAC) accompanied by intra-amniotic inflammation. Patients were classified into the following groups: (1) women without intra-amniotic inflammation or infection (n=16); (2) women with MIAC but without intra-amniotic inflammation (n=5); (3) women with sterile intra-amniotic inflammation (n=15); and (4) women with intra-amniotic infection (n=40). As a readout of in vivo inflammasome activation, extracellular ASC was measured in amniotic fluid by enzyme-linked immunosorbent assay. Acute inflammatory responses in the amniotic fluid and placenta were also evaluated. Results In clinical chorioamnionitis at term: (1) amniotic fluid concentrations of ASC (extracellular ASC is indicative of in vivo inflammasome activation) and IL-6 were greater in women with intra-amniotic infection than in those without intra-amniotic inflammation, regardless of the presence of MIAC; (2) amniotic fluid concentrations of ASC and IL-6 were also higher in women with sterile intra-amniotic inflammation than in those without intra-amniotic inflammation, regardless of the presence of MIAC; (3) amniotic fluid concentrations of IL-6, but not ASC, were more elevated in women with intra-amniotic infection than in those with sterile intra-amniotic inflammation; (4) a positive and significant correlation was observed between amniotic fluid concentrations of ASC and IL-6; (5) no differences were observed in amniotic fluid ASC and IL-6 concentrations between women with and without MIAC in the absence of intra-amniotic inflammation; (6) women with intra-amniotic infection had elevated white blood cell counts and reduced glucose levels in amniotic fluid compared to the other three study groups; and (7) women with intra-amniotic infection presented higher frequencies of acute maternal and fetal inflammatory responses in the placenta than those with sterile intra-amniotic inflammation. Conclusion The intra-amniotic inflammatory response, either induced by alarmins or microbes, is characterized by the activation of the inflammasome - as evidenced by elevated amniotic fluid concentrations of extracellular ASC - in women with clinical chorioamnionitis at term. These findings provide insight into the intra-amniotic inflammatory response in women with clinical chorioamnionitis at term.

Journal ArticleDOI
TL;DR: It is found that exhausted and senescent T cells are present at the human maternal-fetal interface and undergo alterations in a subset of women either with labor at term or preterm labor and placental inflammation and decidual T cell function can be restored upon stimulation.
Abstract: Successful pregnancy requires a tightly-regulated equilibrium of immune cell interactions at the maternal-fetal interface (i.e., the decidual tissues), which plays a central role in the inflammatory process of labor. Most of the innate immune cells in this compartment have been well characterized; however, adaptive immune cells are still under investigation. Herein, we performed immunophenotyping of the decidua basalis and decidua parietalis to determine whether exhausted and senescent T cells are present at the maternal-fetal interface and whether the presence of pathological (i.e., preterm) or physiological (i.e., term) labor and/or placental inflammation alter such adaptive immune cells. In addition, decidual exhausted T cells were sorted to test their functional status. We found that (1) exhausted and senescent T cells were present at the maternal-fetal interface and predominantly expressed an effector memory phenotype, (2) exhausted CD4+ T cells increased in the decidua parietalis as gestational age progressed, (3) exhausted CD4+ and CD8+ T cells decreased in the decidua basalis of women who underwent labor at term compared to those without labor, (4) exhausted CD4+ T cells declined with the presence of placental inflammation in the decidua basalis of women with preterm labor, (5) exhausted CD8+ T cells decreased with the presence of placental inflammation in the decidua basalis of women who underwent labor at term, (6) both senescent CD4+ and CD8+ T cells declined with the presence of placental inflammation in the decidua basalis of women who underwent preterm labor, and (7) decidual exhausted T cells produced IFNγ and TNFα upon in vitro stimulation. Collectively, these findings indicate that exhausted and senescent T cells are present at the human maternal-fetal interface and undergo alterations in a subset of women either with labor at term or preterm labor and placental inflammation. Importantly, decidual T cell function can be restored upon stimulation.

Journal ArticleDOI
TL;DR: The earlier the gestational age at the time of PROM, the higher the intensity of the intra-amniotic inflammatory response in women with preterm PROM and intra-ammiotic infection caused by Ureaplasma spp.
Abstract: Objectives To determine the relationship between the intensity of the intra-amniotic inflammatory response and the gestational age at the time of diagnosis in cases with preterm premature rupture of membranes (PROM) and intra-amniotic infection caused by Ureaplasma spp. Methods A retrospective cohort study was conducted which included 71 women with preterm PROM and a positive amniotic fluid culture with Ureaplasma spp. Women with mixed intra-amniotic infections were excluded. The study population was classified into three groups according to gestational age: group 1, <26 weeks (extreme preterm PROM, n = 17); group 2, 26.0-33.9 weeks (moderate preterm PROM, n = 39); group 3, 34.0-36.9 weeks (late preterm PROM, n = 15). The intensity of the intra-amniotic and maternal inflammatory response was compared among the three groups. The intensity of the intra-amniotic inflammatory response was assessed by the concentration of amniotic fluid matrix metalloproteinase-8 (MMP-8) and white blood cell (WBC) count. The maternal inflammatory response was assessed by the concentration of C-reactive protein (CRP) and WBC count in maternal blood at the time of amniocentesis. Results (1) The median values of amniotic fluid MMP-8 concentration and WBC count were the highest in the extreme preterm PROM group and the lowest in the late preterm PROM group (P < 0.001 and P = 0.01, respectively); (2) the intensity of the maternal inflammatory response measured by maternal blood WBC count and CRP concentration was not significantly associated with gestational age at the time of diagnosis. Conclusion The earlier the gestational age at the time of PROM, the higher the intensity of the intra-amniotic inflammatory response in women with preterm PROM and intra-amniotic infection caused by Ureaplasma spp.

Journal ArticleDOI
TL;DR: Evidence is provided showing that the fetal immune system undergoes premature activation in women with preterm labor without intra-amniotic inflammation, providing a potential new mechanism of disease for some cases of idiopathic preterm birth.
Abstract: Prematurity is the leading cause of perinatal morbidity and mortality worldwide. In most cases, preterm birth is preceded by spontaneous preterm labor, a syndrome that is associated with intra-amniotic inflammation, the most studied etiology. However, the remaining etiologies of preterm labor are poorly understood; therefore, most preterm births are categorized as idiopathic. In this study, we provide evidence showing that the fetal immune system undergoes premature activation in women with preterm labor without intra-amniotic inflammation, providing a potential new mechanism of disease for some cases of idiopathic preterm birth. First, we showed that fetal T cells are a predominant leukocyte population in amniotic fluid during preterm gestations. Interestingly, only fetal CD4+ T cells were increased in amniotic fluid of women who underwent idiopathic preterm labor and birth. This increase in fetal CD4+ T cells was accompanied by elevated amniotic fluid concentrations of T cell cytokines such as IL-2, IL-4, and IL-13, which are produced by these cells upon in vitro stimulation, but was not associated with the prototypical cytokine profile observed in women with intra-amniotic inflammation. Also, we found that cord blood T cells, mainly CD4+ T cells, obtained from women with idiopathic preterm labor and birth displayed enhanced ex vivo activation, which is similar to that observed in women with intra-amniotic inflammation. Finally, we showed that the intra-amniotic administration of activated neonatal CD4+ T cells induces preterm birth in mice. Collectively, these findings provide evidence suggesting that fetal T cell activation is implicated in the pathogenesis of idiopathic preterm labor and birth.

Journal ArticleDOI
TL;DR: The results of this study show that endothelial cell activation/dysfunction reflected by the plasma concentration of sE-selectin is not specific to preeclampsia but is present in pregnancies complicated by SGA fetuses, acute pyelonephritis, and fetal death.
Abstract: Objective: The objective of this study was to determine the profiles of maternal plasma soluble adhesion molecules in patients with preeclampsia, small-for-gestational-age (SGA) fetuses, acute pyel...

Journal ArticleDOI
TL;DR: Amniotic fluid monocytes/macrophages can be of either fetal or maternal origin, or a mixture of both, in women with intra-amniotic inflammation or infection and could be derived from the fetal and maternal vasculature of the placenta.
Abstract: Background Monocytes, after neutrophils, are the most abundant white blood cells found in the amniotic cavity of women with intra-amniotic inflammation/infection. However, the origin of such cells has not been fully investigated. Herein, we determined (1) the origin of amniotic fluid monocytes/macrophages from women with intra-amniotic inflammation/infection, (2) the relationship between the origin of amniotic fluid monocytes/macrophages and preterm or term delivery and (3) the localization of monocytes/macrophages in the placental tissues. Methods Amniotic fluid samples (n = 16) were collected from women with suspected intra-amniotic inflammation or infection. Amniotic fluid monocytes/macrophages were purified by fluorescence-activated cell sorting, and DNA fingerprinting was performed. Blinded placental histopathological evaluations were conducted. Immunohistochemistry was performed to detect CD14+ monocytes/macrophages in the placental tissues. Results DNA fingerprinting revealed that (1) 56.25% (9/16) of amniotic fluid samples had mostly fetal monocytes/macrophages, (2) 37.5% (6/16) had predominantly maternal monocytes/macrophages and (3) one sample (6.25% [1/16]) had a mixture of fetal and maternal monocytes/macrophages. (4) Most samples with predominantly fetal monocytes/macrophages were from women who delivered early preterm neonates (77.8% [7/9]), whereas all samples with mostly maternal monocytes/macrophages or a mixture of both were from women who delivered term or late preterm neonates (100% [7/7]). (5) Most of the women included in this study presented acute maternal and fetal inflammatory responses in the placenta (85.7% [12/14]). (6) Women who had mostly fetal monocytes/macrophages in amniotic fluid had abundant CD14+ cells in the umbilical cord and chorionic plate, whereas women with mostly maternal amniotic fluid monocytes/macrophages had abundant CD14+ cells in the chorioamniotic membranes. Conclusion Amniotic fluid monocytes/macrophages can be of either fetal or maternal origin, or a mixture of both, in women with intra-amniotic inflammation or infection. These immune cells could be derived from the fetal and maternal vasculature of the placenta.

Journal ArticleDOI
TL;DR: Three transcriptome datasets were integrated, one novel, one existing and two existing, to characterize the gene expression changes in myometrium associated with the onset of labor at term and provide new genes/signaling interactions to understand phenotype-specific processes and aid in future studies of parturition.
Abstract: The process of parturition involves the transformation of the quiescent myometrium (uterine smooth muscle) to the highly contractile laboring state. This is thought to be driven by changes in gene expression in myometrial cells. Despite the existence of multiple myometrial gene expression studies, the transcriptional programs that initiate labor are not known. Here, we integrated three transcriptome datasets, one novel (NCBI Gene Expression Ominibus: GSE80172) and two existing, to characterize the gene expression changes in myometrium associated with the onset of labor at term. Computational analyses including classification, singular value decomposition, pathway enrichment, and network inference were applied to individual and combined datasets. Outcomes across studies were integrated with multiple protein and pathway databases to build a myometrial parturition signaling network. A high-confidence (significant across all studies) set of 126 labor genes were identified and machine learning models exhibited high reproducibility between studies. Labor signatures included both known (interleukins, cytokines) and unknown (apoptosis, MYC, cell proliferation/differentiation) pathways while cyclic AMP signaling and muscle relaxation were associated with non-labor. These signatures accurately classified and characterized the stages of labor. The data-derived parturition signaling networks provide new genes/signaling interactions to understand phenotype-specific processes and aid in future studies of parturition.

Journal ArticleDOI
TL;DR: Findings provide in vivo evidence that there is inflammasome activation in the amniotic cavity during the physiological process of labor at term, and suggest that these cells are a source of extracellular ASC in theAmniotic fluid.
Abstract: Objective: Upon inflammasome activation, the adaptor protein of the inflammasome ASC (apoptosis-associated speck-like protein containing a CARD) forms intracellular specks, which can be released in...

Journal ArticleDOI
TL;DR: The pregnancy outcomes of patients with midtrimester cervical insufficiency and bulging membranes are poor as they have a high prevalence of intra-amniotic infection/inflammation, and a pre-operative amniocentesis is key to identify the best candidates for the subsequent placement of a cerclage.
Abstract: Background The frequency of intra-amniotic infection/inflammation (IAI/I) in patients with midtrimester cervical insufficiency is up to 50%. Our purpose was to determine the perinatal outcomes of cervical cerclage in patients with acute cervical insufficiency with bulging membranes, and to compare the admission-to-delivery interval and pregnancy outcomes according to the results of amniotic fluid (AF) analysis and cerclage placement. Methods This was a retrospective cohort study including singleton pregnancies with cervical insufficiency between 15 and 26.9 weeks in two tertiary health centers. IAI/I was defined when at least one of the following criteria was present in AF: (a) a white blood cell (WBC) count >50 cells/mm3; (b) glucose concentration <14 mg/dL; and/or (c) a Gram stain positive for bacteria. Three different groups were compared: (1) absence of IAI/I with placement of a cerclage; (2) amniocentesis not performed with placement of a cerclage; and (3) IAI/I with or without a cerclage. Results Seventy patients underwent an amniocentesis to rule out IAI/I. The prevalence of IAI/I was 19%. Forty-seven patients underwent a cerclage. Patients with a cerclage had a longer median admission-to-delivery interval (33 vs. 2 days; P < 0.001) and delivered at a higher median gestational age (27.4 vs. 22.6 weeks; P = 0.001) than those without a cerclage. The neonatal survival rate in the cerclage group was 62% vs. 23% in those without a cerclage (P = 0.01). Patients without IAI/I who underwent a cerclage had a longer median admission-to-delivery interval (43 vs. 1 day; P < 0.001), delivered at a higher median gestational age (28 vs. 22.1 weeks; P = 0.001) and had a higher neonatal survival rate (67% vs. 8%; P < 0.001) than those with IAI/I. Conclusion The pregnancy outcomes of patients with midtrimester cervical insufficiency and bulging membranes are poor as they have a high prevalence of IAI/I. Therefore, a pre-operative amniocentesis is key to identify the best candidates for the subsequent placement of a cerclage.

Journal ArticleDOI
31 Oct 2019-Cells
TL;DR: It is found that the serum PSG1 concentration is lower in African-American women diagnosed with early-onset and late-ONSet preeclampsia, a pregnancy pathology characterized by shallow trophoblast invasion, than in their respective healthy controls only when the fetus was a male; therefore, the reduced expression of this molecule should be considered in the context of preeClampsia as a potential therapy.
Abstract: Human pregnancy-specific glycoproteins (PSGs) serve immunomodulatory and pro-angiogenic functions during pregnancy and are mainly expressed by syncytiotrophoblast cells. While PSG mRNA expression in extravillous trophoblasts (EVTs) was reported, the proteins were not previously detected. By immunohistochemistry and immunoblotting, we show that PSGs are expressed by invasive EVTs and co-localize with integrin α5. In addition, we determined that native and recombinant PSG1, the most highly expressed member of the family, binds to α5β1 and induces the formation of focal adhesion structures resulting in adhesion of primary EVTs and EVT-like cell lines under 21% oxygen and 1% oxygen conditions. Furthermore, we found that PSG1 can simultaneously bind to heparan sulfate in the extracellular matrix and to α5β1 on the cell membrane. Wound healing assays and single-cell movement tracking showed that immobilized PSG1 enhances EVT migration. Although PSG1 did not affect EVT invasion in the in vitro assays employed, we found that the serum PSG1 concentration is lower in African-American women diagnosed with early-onset and late-onset preeclampsia, a pregnancy pathology characterized by shallow trophoblast invasion, than in their respective healthy controls only when the fetus was a male; therefore, the reduced expression of this molecule should be considered in the context of preeclampsia as a potential therapy.