scispace - formally typeset
Search or ask a question
Author

Robin Côté

Bio: Robin Côté is an academic researcher from University of Connecticut. The author has contributed to research in topics: Excited state & Rydberg formula. The author has an hindex of 36, co-authored 164 publications receiving 6655 citations. Previous affiliations of Robin Côté include Harvard University & Université du Québec à Rimouski.


Papers
More filters
Journal ArticleDOI
TL;DR: A technique for manipulating quantum information stored in collective states of mesoscopic ensembles by optical excitation into states with strong dipole-dipole interactions that can be employed for controlled generation of collective atomic spin states as well as nonclassical photonic states and for scalable quantum logic gates is described.
Abstract: We describe a technique for manipulating quantum information stored in collective states of mesoscopic ensembles. Quantum processing is accomplished by optical excitation into states with strong dipole-dipole interactions. The resulting "dipole blockade" can be used to inhibit transitions into all but singly excited collective states. This can be employed for a controlled generation of collective atomic spin states as well as nonclassical photonic states and for scalable quantum logic gates. An example involving a cold Rydberg gas is analyzed.

1,310 citations

Journal ArticleDOI
TL;DR: Several schemes for implementing a fast two-qubit quantum gate for neutral atoms with the gate operation time much faster than the time scales associated with the external motion of the atoms in the trapping potential are proposed.
Abstract: We propose several schemes for implementing a fast two-qubit quantum gate for neutral atoms with the gate operation time much faster than the time scales associated with the external motion of the atoms in the trapping potential. In our example, the large interaction energy required to perform fast gate operations is provided by the dipole-dipole interaction of atoms excited to low-lying Rydberg states in constant electric fields. A detailed analysis of imperfections of the gate operation is given.

1,216 citations

Journal ArticleDOI
TL;DR: In the laser excitation of ultracold atoms to Rydberg states, a dramatic suppression caused by van der Waals interactions is observed; the dependences of this suppression on both laser irradiance and atomic density are in good agreement with a mean-field model.
Abstract: In the laser excitation of ultracold atoms to Rydberg states, we observe a dramatic suppression caused by van der Waals interactions. This behavior is interpreted as a local excitation blockade: Rydberg atoms strongly inhibit excitation of their neighbors. We measure suppression, relative to isolated atom excitation, by up to a factor of 6.4. The dependences of this suppression on both laser irradiance and atomic density are in good agreement with a mean-field model. These results are an important step towards using ultracold Rydberg atoms in quantum information processing.

477 citations

Journal ArticleDOI
TL;DR: In this article, the long-range interaction potential curves of highly excited Rydberg atom pairs for the combinations Li, Li, Na-Na, K-K, Rb-Rb and Cs-Cs in a perturbative approach were calculated.
Abstract: We have calculated the long-range interaction potential curves of highly excited Rydberg atom pairs for the combinations Li–Li, Na–Na, K–K, Rb–Rb and Cs–Cs in a perturbative approach. The dispersion C-coefficients are determined for all symmetries of molecular states that correlate to the ns–ns, np–np and nd–nd asymptotes. Fitted parameters are given for the scaling of the C-coefficients as a function of the principal quantum number n for all homonuclear pairs of alkali metal atoms.

241 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show how ultracold polar molecules, suggested as a new platform for quantum computation, can be manipulated to switch ''on'' and ''off'' their strong dipole-dipole interactions.
Abstract: We show how ultracold polar molecules, suggested as a new platform for quantum computation, can be manipulated to switch ``on'' and ``off'' their strong dipole-dipole interactions. This can be accomplished through selective excitation of states with considerably different dipole moments. We discuss different schemes for quantum gates using real molecules: CO, LiH, and CaF, as examples of polar molecules which are being experimentally studied at ultracold temperatures. These schemes can be realized in several recently proposed architectures.

241 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors consider the atomic dynamics and the optical response of the medium to a continuous-wave laser and show how coherently prepared media can be used to improve frequency conversion in nonlinear optical mixing experiments.
Abstract: Coherent preparation by laser light of quantum states of atoms and molecules can lead to quantum interference in the amplitudes of optical transitions. In this way the optical properties of a medium can be dramatically modified, leading to electromagnetically induced transparency and related effects, which have placed gas-phase systems at the center of recent advances in the development of media with radically new optical properties. This article reviews these advances and the new possibilities they offer for nonlinear optics and quantum information science. As a basis for the theory of electromagnetically induced transparency the authors consider the atomic dynamics and the optical response of the medium to a continuous-wave laser. They then discuss pulse propagation and the adiabatic evolution of field-coupled states and show how coherently prepared media can be used to improve frequency conversion in nonlinear optical mixing experiments. The extension of these concepts to very weak optical fields in the few-photon limit is then examined. The review concludes with a discussion of future prospects and potential new applications.

4,218 citations

Proceedings Article
14 Jul 1996
TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Abstract: Bose-Einstein condensation (BEC) has been observed in a dilute gas of sodium atoms. A Bose-Einstein condensate consists of a macroscopic population of the ground state of the system, and is a coherent state of matter. In an ideal gas, this phase transition is purely quantum-statistical. The study of BEC in weakly interacting systems which can be controlled and observed with precision holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles.

3,530 citations

Journal ArticleDOI
TL;DR: Feshbach resonances are the essential tool to control the interaction between atoms in ultracold quantum gases and have found numerous experimental applications, opening up the way to important breakthroughs as mentioned in this paper.
Abstract: Feshbach resonances are the essential tool to control the interaction between atoms in ultracold quantum gases. They have found numerous experimental applications, opening up the way to important breakthroughs. This review broadly covers the phenomenon of Feshbach resonances in ultracold gases and their main applications. This includes the theoretical background and models for the description of Feshbach resonances, the experimental methods to find and characterize the resonances, a discussion of the main properties of resonances in various atomic species and mixed atomic species systems, and an overview of key experiments with atomic Bose-Einstein condensates, degenerate Fermi gases, and ultracold molecules.

2,642 citations

Journal ArticleDOI
TL;DR: Rydberg atoms with principal quantum number $n⪢1$ have exaggerated atomic properties including dipole-dipole interactions that scale as ${n}^{4}$ and radiative lifetimes that scale at least{n}−3}$ as mentioned in this paper, and it was proposed a decade ago to implement quantum gates between neutral atom qubits.
Abstract: Rydberg atoms with principal quantum number $n⪢1$ have exaggerated atomic properties including dipole-dipole interactions that scale as ${n}^{4}$ and radiative lifetimes that scale as ${n}^{3}$. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom qubits. The availability of a strong long-range interaction that can be coherently turned on and off is an enabling resource for a wide range of quantum information tasks stretching far beyond the original gate proposal. Rydberg enabled capabilities include long-range two-qubit gates, collective encoding of multiqubit registers, implementation of robust light-atom quantum interfaces, and the potential for simulating quantum many-body physics. The advances of the last decade are reviewed, covering both theoretical and experimental aspects of Rydberg-mediated quantum information processing.

2,156 citations